Purpose: Targeted marrow irradiation (TMI) is an alternative conditioning regimen to total body irradiation (TBI) before bone marrow transplantation in hematologic malignancies. Intensity-modulation methods of external beam radiation therapy are intended to permit significant organ sparing while maintaining adequate target coverage, improving the therapeutic ratio. This study directly compares the dose distributions to targets and organs at risk from TMI and TBI, both modalities conducted by general-use medical linacs at our institution.
View Article and Find Full Text PDFThe aim is to develop and evaluate machine learning methods for generating quantitative parametric maps of effective atomic number (Z), relative electron density (ρ ), mean excitation energy (I ), and relative stopping power (RSP) from clinical dual-energy CT data. The maps could be used for material identification and radiation dose calculation. Machine learning methods of historical centroid (HC), random forest (RF), and artificial neural networks (ANN) were used to learn the relationship between dual-energy CT input data and ideal output parametric maps calculated for phantoms from the known compositions of 13 tissue substitutes.
View Article and Find Full Text PDFPurpose: MR-based pseudo-CT has an important role in MR-based radiation therapy planning and PET attenuation correction. The purpose of this study is to establish a clinically feasible approach, including image acquisition, correction, and CT formation, for pseudo-CT generation of the brain using a single-acquisition, undersampled ultrashort echo time (UTE)-mDixon pulse sequence.
Methods: Nine patients were recruited for this study.
Purpose: The ultrashort echo-time (UTE) sequence is a promising MR pulse sequence for imaging cortical bone which is otherwise difficult to image using conventional MR sequences and also poses strong attenuation for photons in radiation therapy and PET imaging. The authors report here a systematic characterization of cortical bone signal decay and a scanning time optimization strategy for the UTE sequence through k-space undersampling, which can result in up to a 75% reduction in acquisition time. Using the undersampled UTE imaging sequence, the authors also attempted to quantitatively investigate the MR properties of cortical bone in healthy volunteers, thus demonstrating the feasibility of using such a technique for generating bone-enhanced images which can be used for radiation therapy planning and attenuation correction with PET/MR.
View Article and Find Full Text PDFThe use of ionizing radiation for cancer treatment has undergone extraordinary development during the past hundred years. The advancement of medical imaging has been critical in helping to achieve this change. The invention of computed tomography (CT) was pivotal in the development of treatment planning.
View Article and Find Full Text PDFPurpose: Whole stomach radiation therapy is often used in the management of gastric lymphoma. However, very limited data exist with regard to planning target volume requirements for the whole stomach. This study retrospectively analyzed daily megavoltage computed tomographic (CT) scans of gastric lymphoma patients in order to help determine the interfraction variation of the stomach position.
View Article and Find Full Text PDFPurpose: As a foundation for a dose escalation trial, we sought to characterize duodenal and non-duodenal small bowel organ motion between fractions of pancreatic radiation therapy.
Patients And Methods: Nine patients (4 women, 5 men) undergoing radiation therapy were enrolled in this prospective study. The patients had up to four weekly CT scans performed during their course of radiation therapy.