Publications by authors named "Gisela F Wilson"

Rationale: Cardiomyocytes (CMs) differentiated from human pluripotent stem cells (PSCs) are increasingly being used for cardiovascular research, including disease modeling, and hold promise for clinical applications. Current cardiac differentiation protocols exhibit variable success across different PSC lines and are primarily based on the application of growth factors. However, extracellular matrix is also fundamentally involved in cardiac development from the earliest morphogenetic events, such as gastrulation.

View Article and Find Full Text PDF

Human induced pluripotent stem (iPS) cells hold great promise for cardiovascular research and therapeutic applications, but the ability of human iPS cells to differentiate into functional cardiomyocytes has not yet been demonstrated. The aim of this study was to characterize the cardiac differentiation potential of human iPS cells generated using OCT4, SOX2, NANOG, and LIN28 transgenes compared to human embryonic stem (ES) cells. The iPS and ES cells were differentiated using the embryoid body (EB) method.

View Article and Find Full Text PDF

Voltage-gated channels maintain cellular resting potentials and generate neuronal action potentials by regulating ion flux. Here, we show that Ether-à-go-go (EAG) K+ channels also regulate intracellular signaling pathways by a mechanism that is independent of ion flux and depends on the position of the voltage sensor. Regulation of intracellular signaling was initially inferred from changes in proliferation.

View Article and Find Full Text PDF

Signaling complexes are essential for the modulation of excitability within restricted neuronal compartments. Adaptor proteins are the scaffold around which signaling complexes are organized. Here, we demonstrate that the Camguk (CMG)/CASK adaptor protein functionally modulates Drosophila Ether-á-go-go (EAG) potassium channels.

View Article and Find Full Text PDF

Modulation of neuronal excitability is believed to be an important mechanism of plasticity in the nervous system. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been postulated to regulate the ether à go-go (eag) potassium channel in Drosophila. Inhibition of CaMKII and mutation of the eag gene both cause hyperexcitability at the larval neuromuscular junction (NMJ) and memory formation defects in the adult.

View Article and Find Full Text PDF

Accumulating evidence suggests that many ion channels reside within a multiprotein complex that contains kinases and other signaling molecules. The role of the adaptor proteins that physically link these complexes together for the purposes of ion channel modulation, however, has been little explored. Here, we examine the protein-protein interactions required for regulation of an Aplysia bag cell neuron cation channel by a closely associated protein kinase C (PKC).

View Article and Find Full Text PDF