Hepatitis E virus (HEV) exhibits tropism toward hepatocytes and thus affects the liver; however, HEV may also affect other tissues, including the heart, kidneys, intestines, testicles, and central nervous system. To date, the pathophysiological links between HEV infection and extrahepatic manifestations have not yet been established. Considering that HEV infects multiple types of cells, the direct effects of virus replication in peripheral tissues represent a plausible explanation for extrahepatic manifestations.
View Article and Find Full Text PDFIntroduction And Objectives: Hepatitis E virus (HEV) is not routinely screened in blood banks in low- and middle-income countries, and no specific biomarkers of exposure to this virus have yet been identified. We aimed to identify HEV seropositivity and detect virus RNA among blood donors from Mexico to further correlate risk factors related to infection and levels of interleukin-18 (IL-18) and interferon-gamma (IFN-γ) as potential biomarkers.
Materials And Methods: This cross-sectional, single-center study included 691 serum samples of blood donors obtained in 2019.
The COVID-19 pandemic has widespread economic and social effects on Latin America (LA) and the Caribbean (CA). This region, which has a high prevalence of chronic diseases, has been one of the most affected during the pandemic. Multiple symptoms and comorbidities are related to distinct COVID-19 outcomes.
View Article and Find Full Text PDFInteractions between tumour cells and microenvironments may affect their growth and metastasis formation. In search for a better understanding of the role of cellular mediators in the progression of cancer, we investigated the effect of pro-inflammatory cytokines IL-1, IL-6, TNF-alpha and IFN-gamma on the regulation of expression of chemokine receptors CXCR4, CXCR2, CX3CR1, CCR9, and CCR5 in the human breast cancer cell line MCF-7. Our results showed that IL-1 increased CXCR4 expression whereas TNF-alpha increased CX3CR1, CCR9 and CCR5.
View Article and Find Full Text PDFA Rhizobium etli Tn5 insertion mutant, LM01, was selected for its inability to use glutamine as the sole carbon and nitrogen source. The Tn5 insertion in LM01 was localized to the rsh gene, which encodes a member of the RelA/SpoT family of proteins. The LM01 mutant was affected in the ability to use amino acids and nitrate as nitrogen sources and was unable to accumulate (p)ppGpp when grown under carbon and nitrogen starvation, as opposed to the wild-type strain, which accumulated (p)ppGpp under these conditions.
View Article and Find Full Text PDFThe present study determines the regulatory mechanisms that operate on Rhizobium etli glutaminase A. glsA gene expression levels were evaluated under several metabolic conditions by fusions of the glsA gene promoter and the transcriptional reporter cassette uidA2-aad. glsA expression was directly correlated to the glutaminase A activity found under the tested growth conditions, reaching its maximum level in the presence of glutamine and during exponential growth phase.
View Article and Find Full Text PDFThe degradation of asparagine by involves asparaginase and aspartate ammonia-lyase (L-aspartase). The two enzymes were shown to be positively regulated by asparagine and negatively regulated by the carbon source. Asparaginase activity was not regulated by oxygen concentration or by nitrogen catabolite repression.
View Article and Find Full Text PDF