Publications by authors named "Gisela Claassen"

This Letter reports the optimization of a pyrrolopyrimidine series as dual inhibitors of Aurora A/B kinases. This series derived from a pyrazolopyrimidine series previously reported as inhibitors of aurora kinases and CDKs. In an effort to improve the selectivity of this chemotype, we switched to the pyrrolopyrimidine core which allowed functionalization on C-2.

View Article and Find Full Text PDF

Since the early 2000s, the Aurora kinases have become major targets of oncology drug discovery particularly Aurora-A and Aurora-B kinases (AKA/AKB) for which the selective inhibition in cells lead to different phenotypes. In addition to targeting these Aurora kinases involved in mitosis, CDK1 has been added as a primary inhibition target in hopes of enhancing the cytotoxicity of our chemotypes harboring the pyrazolopyrimidine core. SAR optimization of this series using the AKA, AKB and CDK1 biochemical assays led to the discovery of the compound 7h which combines strong potency against the 3 kinases with an acceptable microsomal stability.

View Article and Find Full Text PDF

Oncogene addiction due to Myc deregulation has been identified in a variety of tumor types. In order to identify pharmacological agents that cause selective apoptosis in tumors with deregulated Myc expression, we designed a cell-based screening assay based on our Anti-cancer Screening Apoptosis Program (ASAP) technology targeting increased activity in a "Myc-addicted" cancer cell panel. We have identified a novel set of substituted 4-aryl-3-(3-aryl-1-oxo-2-propenyl)-2(1H)-quinolinones that activates apoptosis in cancer cell lines with deregulated Myc, but show low activity in cell lines where Myc is not deregulated.

View Article and Find Full Text PDF

We report the discovery and SAR study of a series of N-phenyl-1H-pyrazolo[3,4-b]quinolin-4-amines as potent inducers of apoptosis. N-(3-Acetylphenyl)-2,3-dihydro-1H-cyclopenta[b]quinolin-9-amine (2) was discovered through our cell- and caspase-based HTS assays as an inducer of apoptosis. Compound 2 is active against cancer cells derived from several human solid tumors, with EC(50) values ranging from 400 to 700 nM.

View Article and Find Full Text PDF

A series of 4-anilino-2-(2-pyridyl)pyrimidines has been discovered as a new class of potent inducers of apoptosis using a cell-based HTS assay. Compound 5a was found to arrest T47D cells in G2/M and induced apoptosis. SAR studies showed that a small and electron-donating group at the meta-position of the anilino ring is important for activity.

View Article and Find Full Text PDF

HeLaHF cells are transformation revertants of cervical cancer HeLa cells and have lost anchorage-independent growth potential and tumorigenicity. Activation of tumor suppressor(s) was implicated previously in this transformation reversion. In this study, expression profiling analysis was carried out to identify potential oncogenes that are down-regulated in HeLaHF cells.

View Article and Find Full Text PDF

Soft agar growth, used to measure cell anchorage-independent proliferation potential, is one of the most important and most commonly used assays to detect cell transformation. However, the traditional soft agar assay is time-consuming, labor-intensive, and plagued with inconsistencies due to individual subjectivity. It does not, therefore, meet the increasing demands of today's oncology drug target screening or validation processes.

View Article and Find Full Text PDF

We have previously used a subtractive immunization (SI) approach to generate monoclonal antibodies (mAbs) against proteins preferentially expressed by the highly metastatic human epidermoid carcinoma cell line, M(+)HEp3. Here we report the immunopurification, identification and characterization of SIMA135/CDCP1 (subtractive immunization M(+)HEp3 associated 135 kDa protein/CUB domain containing protein 1) using one of these mAbs designated 41-2. Protein expression levels of SIMA135/CDCP1 correlated with the metastatic ability of variant HEp3 cell lines.

View Article and Find Full Text PDF