Most evidence that the brain uses Bayesian inference to integrate noisy sensory signals optimally has been obtained by showing that the noise levels in each modality separately can predict performance in combined conditions. Such a forward approach is difficult to implement when the various signals cannot be measured in isolation, as in spatial orientation, which involves the processing of visual, somatosensory, and vestibular cues. Instead, we applied an inverse probabilistic approach, based on optimal observer theory.
View Article and Find Full Text PDFUsing the subjective visual vertical task (SVV), previous investigations on the maintenance of visual orientation constancy during lateral tilt have found two opposite bias effects in different tilt ranges. The SVV typically shows accurate performance near upright but severe undercompensation at tilts beyond 60 deg (A-effect), frequently with slight overcompensation responses (E-effect) in between. Here we investigate whether a Bayesian spatial-perception model can account for this error pattern.
View Article and Find Full Text PDFWe investigated the effect of visual and vestibular body-tilt cues on the subjective visual vertical (SVV) in six human observers at roll tilts of 0, 60, and 120 degrees . Subjects adjusted a small luminous test line parallel to the perceived direction of gravity, in the presence of a large peripheral visual frame line. These settings, referred to as the frame SVV, were compared with the SVV in complete darkness (dark SVV).
View Article and Find Full Text PDFTo assess the effects of degrading canal cues for dynamic spatial orientation in human observers, we tested how judgments about visual-line orientation in space (subjective visual vertical task, SVV) and estimates of instantaneous body tilt (subjective body-tilt task, SBT) develop in the course of three cycles of constant-velocity roll rotation. These abilities were tested across the entire tilt range in separate experiments. For comparison, we also obtained SVV data during static roll tilt.
View Article and Find Full Text PDFTo determine the direction of object motion in external space, the brain must combine retinal motion signals and information about the orientation of the eyes in space. We assessed the accuracy of this process in eight laterally tilted subjects who aligned the motion direction of a random-dot pattern (30% coherence, moving at 6 degrees /s) with their perceived direction of gravity (motion vertical) in otherwise complete darkness. For comparison, we also tested the ability to align an adjustable visual line (12 degrees diameter) to the direction of gravity (line vertical).
View Article and Find Full Text PDFDuring prolonged rotation about a tilted yaw axis, often referred to as off-vertical axis rotation (OVAR), a percept of being translated along a conical path slowly emerges as the sense of rotation subsides. Recently, we found that these perceptual changes are consistent with a canal-otolith interaction model that attributes the illusory translation percept to improper interpretation of the ambiguous otolith signals. The model further predicts that the illusory translation percept must be accompanied by slowly worsening tilt underestimates.
View Article and Find Full Text PDFHuman spatial orientation relies on vision, somatosensory cues, and signals from the semicircular canals and the otoliths. The canals measure rotation, whereas the otoliths are linear accelerometers, sensitive to tilt and translation. To disambiguate the otolith signal, two main hypotheses have been proposed: frequency segregation and canal-otolith interaction.
View Article and Find Full Text PDFUsing vestibular sensors to maintain visual stability during changes in head tilt, crucial when panoramic cues are not available, presents a computational challenge. Reliance on the otoliths requires a neural strategy for resolving their tilt/translation ambiguity, such as canal-otolith interaction or frequency segregation. The canal signal is subject to bandwidth limitations.
View Article and Find Full Text PDFWe used a memory-saccade task to test whether the location of a target, briefly presented before a whole-body rotation in roll, is stored in egocentric or in allocentric coordinates. To make this distinction, we exploited the fact that subjects, when tilted sideways in darkness, make systematic errors when indicating the direction of gravity (an allocentric task) even though they have a veridical percept of their self-orientation in space. We hypothesized that if spatial memory is coded allocentrically, these distortions affect the coding of remembered targets and their readout after a body rotation.
View Article and Find Full Text PDFA striking feature of visual verticality estimates in the dark is undercompensation for lateral body tilt. Earlier studies and models suggest that this so-called Aubert (A) effect increases gradually to around 130 degrees tilt and then decays smoothly on approaching the inverted position. By contrast, we recently found an abrupt transition toward errors of opposite sign (E effect) when body tilt exceeded 135 degrees .
View Article and Find Full Text PDFResults of earlier spatial-orientation studies focusing on the sense of verticality have emphasized an intriguing paradox. Despite evidence that nearly veridical signals for gravicentric head orientation and egocentric visual stimulus orientation are available, roll-tilted subjects err in the direction of the long body axis when adjusting a visual line to vertical in darkness (Aubert effect). This has led to the suggestion that a central egocentric bias signal with fixed strength and direction acts to pull the perceived vertical to the subjects' zenith (M-model).
View Article and Find Full Text PDFTo investigate interactions between voluntary and reflexive eye movements, five subjects were asked to make pro- or anti-saccades to various oblique locations cued by a head-fixed flash while being rotated sinusoidally in yaw (0.17 Hz; 73 degrees /s peak velocity) in complete darkness. Eye movements were recorded with the coil technique.
View Article and Find Full Text PDFWe investigated whether saccades evoked by electrical stimulation (E-saccades) in the superior colliculus can compensate for passive sinusoidal head rotation in yaw so as to keep the rapid gaze shift constant. After accounting for variations in E-saccade onset position, we found significant horizontal metric changes, proportional to head velocity, in 31 of 37 experiments in 2 monkeys. Vertical effects were small.
View Article and Find Full Text PDFThis study investigated how binocular gaze is controlled to compensate for self-generated translational movements of the head where geometric requirements dictate that the ideal gaze signal needs to be modulated by the inverse of target distance. Binocular gaze (eye plus head) was measured for visual and remembered targets at various distances in six human subjects during active head translations at frequencies of 0.25, 0.
View Article and Find Full Text PDFPrevious testing of the ability to set a luminous line to the direction of gravity in passively-tilted subjects, in darkness, has revealed a remarkable pattern of systematic errors at tilts beyond 60 degrees, as if body tilt is undercompensated or underestimated (Aubert or A-effect). We investigated whether these consistent deviations from orientation constancy can be avoided during active body tilt, where more potential cues about body tilt (e.g.
View Article and Find Full Text PDFThe vestibuloocular reflex (VOR) needs to modulate its gain depending on target distance to prevent retinal slip during head movements. We investigated gain modulation (context compensation) for binocular gaze stabilization in human subjects during voluntary yaw and pitch head rotations. Movements of each eye were recorded, both when attempting to maintain gaze on a small visual target at straight-ahead in a darkened room and after its disappearance (remembered target).
View Article and Find Full Text PDFThis study addressed the question of how the three-dimensional (3-D) control strategy for the upper arm depends on what the forearm is doing. Subjects were instructed to point a laser-attached in line with the upper arm-toward various visual targets, such that two-dimensional (2-D) pointing directions of the upper arm were held constant across different tasks. For each such task, subjects maintained one of several static upper arm-forearm configurations, i.
View Article and Find Full Text PDFOne of the key questions in spatial perception is whether the brain has a common representation of gravity that is generally accessible for various perceptual orientation tasks. To evaluate this idea, we compared the ability of six tilted subjects to indicate earth-centric directions in the dark with a visual and an oculomotor paradigm and to estimate their body tilt relative to gravity. Subjective earth-horizontal and -vertical data were collected, either by adjusting a visual line or by making saccades, at 37 roll-tilt angles across the entire range.
View Article and Find Full Text PDFRecent studies have indicated that the superior colliculus (SC), traditionally considered to be saccade-related, may play a role in the coding of eye movements in both direction and depth. Similarly, it has been suggested that omnidirectional pause neurons are not only involved in the initiation of saccades, but can also modulate vergence eye movements. These new developments provide a challenge for current oculomotor models that attempt to describe saccade-vergence coordination and the neural mechanisms that may be involved.
View Article and Find Full Text PDFWe investigated head movements of patients with spasmodic torticollis toward targets in various directions. These patients, whose severe dystonia was reflected in an abnormal resting head position, appeared to retain a Donders'-type strategy for the control of the rotational degrees of freedom of the head. As in normals, rotation vectors, representing head orientation, were confined to a curved surface, which specifies how head torsion depends on gaze direction.
View Article and Find Full Text PDFPerturbation of combined saccade-vergence movements by microstimulation in monkey superior colliculus. This study investigated the role of the monkey superior colliculus (SC) in the control of visually (V)-guided combined saccade-vergence movements by assessing the perturbing effects of microstimulation. We elicited an electrical saccade (E) by stimulation (in 20% of trials) in the SC while the monkey was preparing a V-guided movement to a near target.
View Article and Find Full Text PDFPrimates frequently make rapid binocular eye movements to reorient gaze in both direction and depth. To explain the unequal movements made by the two eyes, it often is assumed that they result from the combined action of a conjugate saccadic system and a vergence contribution. Clearly such a scheme can only yield coordinated binocular movements if both systems are guided by a shared or coupled target selection mechanism.
View Article and Find Full Text PDFUntil now, most studies concerning active head movements in three dimensions have used the classical rotation vector description. Although this description yields both the orientation of the head rotation axis and the amount of rotation, it is incomplete because it cannot specify the location of this rotation axis in space. The latter is of importance for a proper picture of the vestibular consequences of active head movements and has relevance for the problem of how the brain deals with the inherent kinematic redundancy of the multijoint head-neck system.
View Article and Find Full Text PDF