Publications by authors named "Girvin S"

Efficient suppression of errors without full error correction is crucial for applications with noisy intermediate-scale quantum devices. Error mitigation allows us to suppress errors in extracting expectation values without the need for any error correction code, but its applications are limited to estimating expectation values, and cannot provide us with high-fidelity quantum operations acting on arbitrary quantum states. To address this challenge, we propose to use error filtration (EF) for gate-based quantum computation, as a practical error suppression scheme without resorting to full quantum error correction.

View Article and Find Full Text PDF

The design of quantum hardware that reduces and mitigates errors is essential for practical quantum error correction (QEC) and useful quantum computation. To this end, we introduce the circuit-Quantum Electrodynamics (QED) dual-rail qubit in which our physical qubit is encoded in the single-photon subspace, [Formula: see text], of two superconducting microwave cavities. The dominant photon loss errors can be detected and converted into erasure errors, which are in general much easier to correct.

View Article and Find Full Text PDF

Fast, high-fidelity operations between microwave resonators are an important tool for bosonic quantum computation and simulation with superconducting circuits. An attractive approach for implementing these operations is to couple these resonators via a nonlinear converter and actuate parametric processes with RF drives. It can be challenging to make these processes simultaneously fast and high fidelity, since this requires introducing strong drives without activating parasitic processes or introducing additional decoherence channels.

View Article and Find Full Text PDF

The ambition of harnessing the quantum for computation is at odds with the fundamental phenomenon of decoherence. The purpose of quantum error correction (QEC) is to counteract the natural tendency of a complex system to decohere. This cooperative process, which requires participation of multiple quantum and classical components, creates a special type of dissipation that removes the entropy caused by the errors faster than the rate at which these errors corrupt the stored quantum information.

View Article and Find Full Text PDF

Eating palatable foods reduces behavioral and hypothalamic-pituitary-adrenocortical (HPA) axis responses to stress - an idea referred to by the colloquial term "comfort" food. To study the underlying stress-relieving mechanisms of palatable foods, we previously developed a paradigm of limited sucrose feeding in which male rats are given twice-daily access to a small amount of sucrose drink and subsequently have reduced stress responses. Prior research in humans and rodents implicates high dietary sugars/carbohydrates with reduced stress responsivity.

View Article and Find Full Text PDF

Bosonic modes have wide applications in various quantum technologies, such as optical photons for quantum communication, magnons in spin ensembles for quantum information storage and mechanical modes for reversible microwave-to-optical quantum transduction. There is emerging interest in utilizing bosonic modes for quantum information processing, with circuit quantum electrodynamics (circuit QED) as one of the leading architectures. Quantum information can be encoded into subspaces of a bosonic superconducting cavity mode with long coherence time.

View Article and Find Full Text PDF

The interaction of photons and coherent quantum systems can be employed to detect electromagnetic radiation with remarkable sensitivity. We introduce a quantum radiometer based on the photon-induced dephasing process of a superconducting qubit for sensing microwave radiation at the subunit photon level. Using this radiometer, we demonstrate the radiative cooling of a 1 K microwave resonator and measure its mode temperature with an uncertainty ∼0.

View Article and Find Full Text PDF

We introduce a new approach to Gottesman-Kitaev-Preskill (GKP) states that treats their finite-energy version in an exact manner. Based on this analysis, we develop new qubit-oscillator circuits that autonomously stabilize a GKP manifold, correcting errors without relying on qubit measurements. Finally, we show numerically that logical information encoded in GKP states is very robust against typical oscillator noise sources when stabilized by these new circuits.

View Article and Find Full Text PDF

The code capacity threshold for error correction using biased-noise qubits is known to be higher than with qubits without such structured noise. However, realistic circuit-level noise severely restricts these improvements. This is because gate operations, such as a controlled-NOT (CX) gate, which do not commute with the dominant error, unbias the noise channel.

View Article and Find Full Text PDF

An outstanding challenge for quantum information processing using bosonic systems is Gaussian errors such as excitation loss and added thermal noise errors. Thus, bosonic quantum error correction is essential. Most bosonic quantum error correction schemes encode a finite-dimensional logical qubit or qudit into noisy bosonic oscillator modes.

View Article and Find Full Text PDF

Quantum superpositions of macroscopically distinct classical states-so-called Schrödinger cat states-are a resource for quantum metrology, quantum communication and quantum computation. In particular, the superpositions of two opposite-phase coherent states in an oscillator encode a qubit protected against phase-flip errors. However, several challenges have to be overcome for this concept to become a practical way to encode and manipulate error-protected quantum information.

View Article and Find Full Text PDF

Hybrid quantum systems in which acoustic resonators couple to superconducting qubits are promising quantum information platforms. High quality factors and small mode volumes make acoustic modes ideal quantum memories, while the qubit-phonon coupling enables the initialization and manipulation of quantum states. We present a scheme for quantum computing with multimode quantum acoustic systems, and based on this scheme, propose a hardware-efficient implementation of a quantum random access memory (QRAM).

View Article and Find Full Text PDF

Quantum computation presents a powerful new paradigm for information processing. A robust universal quantum computer can be realized with any well controlled quantum system, but a successful platform will ultimately require the combination of highly coherent, error-correctable quantum elements with at least one entangling operation between them. Quantum information stored in a continuous-variable system-for example, a harmonic oscillator-can take advantage of hardware-efficient quantum error correction protocols that encode information in the large available Hilbert space of each element.

View Article and Find Full Text PDF

Entangling gates between qubits are a crucial component for performing algorithms in quantum computers. However, any quantum algorithm must ultimately operate on error-protected logical qubits encoded in high-dimensional systems. Typically, logical qubits are encoded in multiple two-level systems, but entangling gates operating on such qubits are highly complex and have not yet been demonstrated.

View Article and Find Full Text PDF

We investigate cat codes that can correct multiple excitation losses and identify two types of logical errors: bit-flip errors due to excessive excitation loss and dephasing errors due to quantum backaction from the environment. We show that selected choices of logical subspace and coherent amplitude significantly reduce dephasing errors. The trade-off between the two major errors enables optimized performance of cat codes in terms of minimized decoherence.

View Article and Find Full Text PDF

Quantum jumps of a qubit are usually observed between its energy eigenstates, also known as its longitudinal pseudospin component. Is it possible, instead, to observe quantum jumps between the transverse superpositions of these eigenstates? We answer positively by presenting the first continuous quantum nondemolition measurement of the transverse component of an individual qubit. In a circuit QED system irradiated by two pump tones, we engineer an effective Hamiltonian whose eigenstates are the transverse qubit states, and a dispersive measurement of the corresponding operator.

View Article and Find Full Text PDF

Quantum error correction (QEC) can overcome the errors experienced by qubits and is therefore an essential component of a future quantum computer. To implement QEC, a qubit is redundantly encoded in a higher-dimensional space using quantum states with carefully tailored symmetry properties. Projective measurements of these parity-type observables provide error syndrome information, with which errors can be corrected via simple operations.

View Article and Find Full Text PDF

Quantum superpositions of distinct coherent states in a single-mode harmonic oscillator, known as "cat states," have been an elegant demonstration of Schrödinger's famous cat paradox. Here, we realize a two-mode cat state of electromagnetic fields in two microwave cavities bridged by a superconducting artificial atom, which can also be viewed as an entangled pair of single-cavity cat states. We present full quantum state tomography of this complex cat state over a Hilbert space exceeding 100 dimensions via quantum nondemolition measurements of the joint photon number parity.

View Article and Find Full Text PDF

We engineer a quantum bath that enables entropy and energy exchange with a one-dimensional Bose-Hubbard lattice with attractive on-site interactions. We implement this in an array of three superconducting transmon qubits coupled to a single cavity mode; the transmons represent lattice sites and their excitation quanta embody bosonic particles. Our cooling protocol preserves the particle number-realizing a canonical ensemble-and also affords the efficient preparation of dark states which, due to symmetry, cannot be prepared via coherent drives on the cavity.

View Article and Find Full Text PDF

Quantum error correction codes are designed to protect an arbitrary state of a multi-qubit register from decoherence-induced errors, but their implementation is an outstanding challenge in the development of large-scale quantum computers. The first step is to stabilize a non-equilibrium state of a simple quantum system, such as a quantum bit (qubit) or a cavity mode, in the presence of decoherence. This has recently been accomplished using measurement-based feedback schemes.

View Article and Find Full Text PDF

In contrast to a single quantum bit, an oscillator can store multiple excitations and coherences provided one has the ability to generate and manipulate complex multiphoton states. We demonstrate multiphoton control by using a superconducting transmon qubit coupled to a waveguide cavity resonator with a highly ideal off-resonant coupling. This dispersive interaction is much greater than decoherence rates and higher-order nonlinearities to allow simultaneous manipulation of hundreds of photons.

View Article and Find Full Text PDF

We identify signatures of the intrinsic nonlinear interaction between light and mechanical motion in cavity optomechanical systems. These signatures are observable even when the cavity linewidth exceeds the optomechanical coupling rate. A strong laser drive red detuned by twice the mechanical frequency from the cavity resonance frequency makes two-phonon processes resonant, which leads to a nonlinear version of optomechanically induced transparency.

View Article and Find Full Text PDF

We present a general protocol for stabilizer operator measurements in a system of N superconducting qubits. Using the dispersive coupling between the qubits and the field of a resonator as well as single qubit rotations, we show how to encode the parity of an arbitrary subset of M ≤ N qubits, onto two quasiorthogonal coherent states of the resonator. Together with a fast cavity readout, this enables the efficient measurement of arbitrary stabilizer operators without locality constraints.

View Article and Find Full Text PDF