Publications by authors named "Girolamo Tagliapietra"

In this paper, different concepts of reconfigurable RF-MEMS attenuators for beamforming applications are proposed and critically assessed. Capitalizing on the previous part of this work, the 1-bit attenuation modules featuring series and shunt resistors and low-voltage membranes (7-9 V) are employed to develop a 3-bit attenuator for fine-tuning attenuations (<-10 dB) in the 24.25-27.

View Article and Find Full Text PDF

This paper describes different variants of broadband and simple attenuator modules for beamforming applications, based on radio frequency micro electro-mechanical systems (RF-MEMS), framed within coplanar waveguide (CPW) structures. The modules proposed in the first part of this work differ in their actuation voltage, topology, and desired attenuation level. Fabricated samples of basic 1-bit attenuation modules, characterized by a moderate footprint of 690 × 1350 µm and aiming at attenuation levels of -2, -3, and -5 dB in the 24.

View Article and Find Full Text PDF

Triangular resonators re-shaped into Sierpinski geometry and U-shaped resonators were designed, linking them with single-pole-double-through (SPDT) RF MEMS switches to provide frequency tuning for potential applications in the K-Band. Prototypes of band-stop narrowband filters working around 20 GHz and 26 GHz, interesting for RADAR and satellite communications, were studied in a coplanar waveguide (CPW) configuration, and the tuning was obtained by switching between two paths of the devices loaded with different resonators. As a result, dual-band operation or fine-tuning could be obtained depending on the choice of the resonator, acting as a building block.

View Article and Find Full Text PDF

Triangular resonators re-shaped with Sierpinski geometry were designed, manufactured, and tested for potential applications in the K-Band. Prototypes of band-stop filters working around 20 GHz and 26 GHz, interesting for RADAR and satellite communications, were studied in a coplanar waveguide (CPW) configuration. Single and coupled structures were analyzed to give evidence for: (i) the tuning of the resonance frequency by increasing the internal complexity of the triangle and (ii) resonance enhancement when coupled structures are considered.

View Article and Find Full Text PDF

U-shaped microwave resonators implemented by RF MEMS switches can be considered the result of a novel design approach for obtaining small-footprint tunable resonators, owing to the bent shape of the resonator and the microsystem solution for changing the frequency of resonance. In this paper, we discuss the design approach for potential configurations of U-shaped structures combined with ohmic RF MEMS switches. Owing to their prospective application in RADAR and satellite systems, the devices were assessed for K-Band operation, specifically for 15 GHz, 20 GHz, and 26 GHz.

View Article and Find Full Text PDF

This work presents a bandpass-reconfigurable planar pseudohairpin filter based on RF-MEMS switches. Hairpin-line structures are preferred to design microstrip filters because this class of filters offers a more compact size, and, in general, hairpin filters do not need ground connections for resonators. In this work, the U-shape resonators are arranged to obtain an interdigit capacitor to improve the coupling between the resonators.

View Article and Find Full Text PDF

The emerging paradigms of the Beyond-5G, 6G and Super-IoT will demand for high-performance Radio Frequency (RF) passive components, and RF-MEMS technology, i.e. Microsystems-based RF passives, is a good candidate to meet such a challenge.

View Article and Find Full Text PDF