Proc Natl Acad Sci U S A
November 2024
The biomechanical properties of cells and tissues play an important role in our fundamental understanding of the structures and functions of biological systems at both the cellular and subcellular levels. Recently, Brillouin microscopy, which offers a label-free spectroscopic means of assessing viscoelastic properties in vivo, has emerged as a powerful way to interrogate those properties on a microscopic level in living tissues. However, susceptibility to photodamage and photobleaching, particularly when high-intensity laser beams are used to induce Brillouin scattering, poses a significant challenge.
View Article and Find Full Text PDFCavity-electromechanical systems are extensively used for sensing and controlling the vibrations of mechanical resonators down to their quantum limit. The nonlinear radiation-pressure interaction in these systems could result in an unstable response of the mechanical resonator showing features such as frequency-combs, period-doubling bifurcations and chaos. However, due to weak light-matter interaction, typically these effects appear at very high driving strengths.
View Article and Find Full Text PDFThe biomechanical properties of cells and tissues play an important role in our fundamental understanding of the structures and functions of biological systems at both the cellular and subcellular levels. Recently, Brillouin microscopy, which offers a label-free spectroscopic means of assessing viscoelastic properties in vivo, has emerged as a powerful way to interrogate those properties on a microscopic level in living tissues. However, susceptibility to photo-damage and photo-bleaching, particularly when high-intensity laser beams are used to induce Brillouin scattering, poses a significant challenge.
View Article and Find Full Text PDFBrillouin microscopy is an emerging label-free imaging technique used to assess local viscoelastic properties. Quantum-enhanced stimulated Brillouin scattering is demonstrated using low power continuous-wave lasers at 795 nm. A signal-to-noise ratio enhancement of 3.
View Article and Find Full Text PDFWe demonstrate how the Hong-Ou-Mandel (HOM) interference with polarization-entangled photons can be used to probe ultrafast dephasing. We can infer the optical properties like the real and imaginary parts of the complex susceptibility of the medium from changes in the position and the shape of the HOM dip. From the shift of the HOM dip, we are able to measure 22 fs dephasing time using a continuous-wave (CW) laser even with optical loss > 97 %, while the HOM dip visibility is maintained at 92.
View Article and Find Full Text PDFQuantum entanglement has emerged as a great resource for spectroscopy and its importance in two-photon spectrum and microscopy has been demonstrated. Current studies focus on the two-photon absorption, whereas the Raman spectroscopy with quantum entanglement still remains elusive, with outstanding issues of temporal and spectral resolutions. Here we study the new capabilities provided by entangled photons in coherent Raman spectroscopy.
View Article and Find Full Text PDFSynthesizing many-body interaction Hamiltonians is a central task in quantum simulation. However, it is challenging to synthesize Hamiltonians that have more than two spins in a single term. Here we synthesize m-body spin-exchange Hamiltonians with m up to 5 in a superconducting quantum circuit by simultaneously exciting multiple independent qubits with time-energy correlated photons generated from a qudit.
View Article and Find Full Text PDFWe demonstrate that the multipoles associated with the density matrix are truly observable quantities that can be unambiguously determined from intensity moments. Given their correct transformation properties, these multipoles are the natural variables to deal with a number of problems in the quantum domain. In the case of polarization, the moments are measured after the light has passed through two quarter-wave plates, one half-wave plate, and a polarizing beam splitter for specific values of the angles of the wave plates.
View Article and Find Full Text PDFWe propose to enhance the performance of localized plasmon structured illumination microscopy (LP-SIM) via intensity correlations. LP-SIM uses sub-wavelength illumination patterns to encode high spatial frequency information. It can enhance the resolution up to three-fold before gaps in the optical transfer function (OTF) support arise.
View Article and Find Full Text PDFElectron-multiplying charge-coupled-device cameras (EMCCDs) have been used to observe quantum noise reductions in beams of light in the transverse spatial degree of freedom. For the quantum noise reduction in the temporal domain, 'bucket detectors,' usually composed of photodiodes with operational amplifiers, are used to register the intensity fluctuations in beams of light within the detectors' bandwidth. Here, we report on measurements of the temporal quantum noise reduction in bright twin beams using an EMCCD camera.
View Article and Find Full Text PDFWe report the first observation of simultaneous excitation of two noninteracting atoms by a pair of time-frequency correlated photons in a superconducting circuit. The strong coupling regime of this process enables the synthesis of a three-body interaction Hamiltonian, which allows the generation of the tripartite Greenberger-Horne-Zeilinger state in a single step with a fidelity as high as 0.95.
View Article and Find Full Text PDFChiral interfaces provide a new platform to execute quantum control of light-matter interactions. One phenomenon which has emerged from engineering such nanophotonic interfaces is spin-momentum locking akin to similar reports in electronic topological materials and phases. While there are reports of spin-momentum locking with combination of chiral emitters and/or chiral metamaterials with directional far field excitation it is not readily observable with both achiral emitters and metamaterials.
View Article and Find Full Text PDFOne of the most widely used chiroptical spectroscopic methods for studying chiral molecules is Raman optical activity; however, the chiral Raman optical activity signal is extremely weak. Here, we theoretically examine enhanced chiral signals in a system with strongly prepared molecular coherence. We show that the enhanced chiral signal due to strong molecular coherence is up to four orders of magnitude higher than that of the spontaneous Raman optical activity.
View Article and Find Full Text PDFFröhlich discovered the remarkable condensation of polar vibrations into the lowest frequency mode when the system is pumped externally. For a full understanding of the Fröhlich condensate one needs to go beyond the mean field level to describe critical behavior as well as quantum fluctuations. The energy redistribution among vibrational modes with nonlinearity included is shown to be essential for realizing the condensate and the phonon-number distribution, revealing the transition from quasithermal to super-Poissonian statistics with the pump.
View Article and Find Full Text PDFWe describe how magnetic fields can be exploited to control dipole-induced transparency in quantum dot cavity systems. Coupling a linearly-polarized microcavity mode to two spin charged exciton states of a single quantum dot, we demonstrate how cavity-mediated interference and magnetic-field resonance shifts can be utilized to control the transmission of light and on-chip photons, in both magnitude and phase. In particular, we show a triple resonance feature, which also survives with weakly coupled cavities, as long as one operates in the good cooperativity regime.
View Article and Find Full Text PDFIntensity correlation microscopy (ICM), which is prominently known through antibunching microscopy or super-resolution optical fluctuation imaging (SOFI), provides super-resolution through a correlation analysis of antibunching of independent quantum emitters or temporal fluctuations of blinking fluorophores. For correlation order m the PSF in the signal is effectively taken to the mth power, and is thus directly shrunk by the factor m. Combined with deconvolution, a close to linear resolution improvement of factor m can be obtained.
View Article and Find Full Text PDFInterference of light fields, first postulated by Young, is one of the fundamental pillars of physics. Dirac extended this observation to the quantum world by stating that each photon interferes only with itself. A precondition for interference to occur is that no welcher-weg information labels the paths the photon takes; otherwise, the interference vanishes.
View Article and Find Full Text PDFWe show that, contrary to popular belief, diffraction-free beams may not only reconstruct themselves after hitting an opaque obstacle but also, for example, Gaussian beams. We unravel the mathematics and the physics underlying the self-reconstruction mechanism and we provide for a novel definition for the minimum reconstruction distance beyond geometric optics, which is in principle applicable to any optical beam that admits an angular spectrum representation. Moreover, we propose to quantify the self-reconstruction ability of a beam via a newly established degree of self-healing.
View Article and Find Full Text PDFWe describe how quantum dot semiconductor cavity systems can be engineered to realize anisotropy-induced dipole-dipole coupling between orthogonal dipole states in a single quantum dot. Quantum dots in single-mode cavity structures as well as photonic crystal waveguides coupled to spin states or linearly polarized excitons are considered. We demonstrate how the dipole-dipole coupling can control the radiative decay rate of excitons and form pure entangled states in the long time limit.
View Article and Find Full Text PDFMetasurfaces with sub-wavelength features are useful in modulating the phase, amplitude or polarization of electromagnetic fields. While several applications are reported for light manipulation and control, the sharp phase changes would be useful in enhancing the beam shifts at reflection from a metasurface. In designed periodic patterns on metal film, at surface plasmon resonance, we demonstrate Goos-Hanchen shift of the order of 70 times the incident wavelength and the angular shifts of several hundred microradians.
View Article and Find Full Text PDFSuperradiance, i.e., spontaneous emission of coherent radiation by an ensemble of two-level atoms in collective states introduced by Dicke in 1954, is one of the enigmatic problems of quantum optics.
View Article and Find Full Text PDFWe report the possibility of completely destructive interference of three indistinguishable photons on a three port device providing a generalisation of the well known Hong-Ou-Mandel interference of two indistinguishable photons on a two port device. Our analysis is based on the underlying mathematical framework of SU(3) transformations rather than SU(2) transformations. We show the completely destructive three photon interference for a large range of parameters of the three port device and point out the physical origin of such interference in terms of the contributions from different quantum paths.
View Article and Find Full Text PDFMimicking the quantum phenomena in metamaterials through coupled classical resonators has attracted enormous interest. Metamaterial analogs of electromagnetically induced transparency (EIT) enable promising applications in telecommunications, light storage, slow light and sensing. Although the EIT effect has been studied extensively in coupled metamaterial systems, excitation of electromagnetically induced absorption (EIA) through near-field coupling in these systems has only been sparsely explored.
View Article and Find Full Text PDF