Publications by authors named "Girish C Shukla"

Women are at a significantly higher risk of osteoporotic fractures, largely due to progressive bone demineralization and impaired bone microarchitecture. Low bone mineral density (BMD) is a common condition in women worldwide. Disrupted homocysteine (Hcy) metabolism has been linked to reduced BMD and increased risk of osteoporotic fractures.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the impact of chronic nicotine addiction on oxidative and psychological stress among unemployed youth in India, revealing significant health detriments and a rise in Homocysteine (Hcy) levels among users.
  • - It involved 156 educated, unemployed male participants aged 20-40, with results showing that nicotine addicts reported higher perceived stress and lower coping abilities compared to non-addicted individuals.
  • - Biochemical analysis indicated that nicotine addiction resulted in increased oxidative stress markers and altered blood parameters, emphasizing the urgent need for interventions targeting nicotine addiction among this demographic.
View Article and Find Full Text PDF

Stem cells' self-renewal and multi-lineage differentiation are regulated by a complex network consisting of signaling factors, chromatin regulators, transcription factors, and non-coding RNAs (ncRNAs). Diverse role of ncRNAs in stem cell development and maintenance of bone homeostasis have been discovered recently. The ncRNAs, such as long non-coding RNAs, micro RNAs, circular RNAs, small interfering RNA, Piwi-interacting RNAs, etc.

View Article and Find Full Text PDF

Background: The present study aims to evaluate the survival status of patients with gallbladder cancer (GBC) and explore the prognostic factors for the improvement and preventions.

Methods: The study consists of 176 patients with clinically diagnosed gallbladder cancer; the study was conducted between 2019 and 2021 registered at Kamala Nehru Memorial Cancer Hospital, Prayagraj, India. The survival rates were analyzed by the Kaplan-Meier method; survival rate difference was analyzed by log-rank test, prognosis factors; and hazard ratio for mortality outcomes was estimated using Cox regression method.

View Article and Find Full Text PDF

Metabolic reprogramming enables cancer cells to proliferate and produce tumor biomass under a nutrient-deficient microenvironment and the stress of metabolic waste. A cancer cell adeptly undergoes a variety of adaptations in metabolic pathways and differential expression of metabolic enzyme genes. Metabolic adaptation is mainly determined by the physiological demands of the cancer cell of origin and the host tissue.

View Article and Find Full Text PDF

Background: Breast Cancer (BC) is a genetically and clinically heterogeneous disease including complex interactions between gene-gene and gene-environment components. This study aimed, to explore whether the Glutathione S- transferase (GSTs) gene polymorphism has role in BC susceptibility. We further evaluated the frequency of four subtypes of BC based on molecular classification followed by microscopic histological analysis to study the grades of invasive ductal carcinoma (IDC).

View Article and Find Full Text PDF

Context: Lung cancer pathological process involves cumulative effects exerted by gene polymorphism(s), epigenetic modifications, and alterations in DNA repair machinery. Further, DNA damage due to oxidative stress, chronic inflammation, and the interplay between genetic and environmental factors is also an etiologic milieu of this malignant disease.

Aims: The present study aims to assess the prognostic value of DNA repair, cytokines, and GST gene polymorphism in lung cancer patients who had not received any neoadjuvant therapy.

View Article and Find Full Text PDF

The Androgen Receptor (AR), transcriptionally activated by its ligands, testosterone and dihydrotestosterone (DHT), is widely expressed in cells and tissues, influencing normal biology and disease states. The protein product of the AR gene is involved in the regulation of numerous biological functions, including the development and maintenance of the normal prostate gland and of the cardiovascular, musculoskeletal and immune systems. Androgen signalling, mediated by AR protein, plays a crucial role in the development of prostate cancer (PCa), and is presumed to be involved in other cancers including those of the breast, bladder, liver and kidney.

View Article and Find Full Text PDF
Article Synopsis
  • Disruption in lipid and cholesterol metabolism can lead to metabolic and cardiovascular diseases, regulated primarily through two major transcription pathways: SREBP for cholesterol synthesis and LXR/RXR for cholesterol transport.
  • Small non-coding microRNAs (miRNAs) play a crucial role in the posttranscriptional control of genes involved in cholesterol metabolism, impacting both the mRNA levels and translation of vital proteins.
  • This review highlights the regulatory functions of miRNAs on cholesterol and lipid metabolism, their effects on key molecules, and the potential for using miRNAs in enhancing small molecule therapies for related diseases.
View Article and Find Full Text PDF

Androgen receptor (AR) contributes to the progression of glioblastoma (GBM), and antiandrogen agents have the potential to be used for the treatment of GBM. However, AR mutation commonly happens in GBM, which makes the antiandrogen agents less effective. Heat shock 27 kDa protein (HSP27) is a well-documented chaperone protein to stabilize ARs.

View Article and Find Full Text PDF

The novel SARS-CoV-2 is responsible for causing the ongoing outbreak of coronavirus disease 19 (COVID-19), a systemic infection in humans. Ever since it was first detected in December 2019, the number of confirmed cases has continued to increase. Within a short period, this disease has become a global issue, and therefore it is characterized as a pandemic.

View Article and Find Full Text PDF

Dysregulation of miRNAs has been demonstrated in several human malignancies including prostate cancer. Due to tissue limitation and variable disease progression, stage-specific miRNAs changes in prostate cancer is unknown. Using chip-based microarray, we investigated global miRNA expression in human prostate cancer LNCaP, PC3, DU145 and 22Rv1 cells representing early-stage, advanced-stage and castration resistant prostate cancer in comparison with normal prostate epithelial cells.

View Article and Find Full Text PDF

Castration-resistant prostate cancer (CRPC) is defined by tumor microenvironment heterogeneity affecting intrinsic cellular mechanisms including dysregulated androgen signaling, aerobic glycolysis (Warburg effect), and aberrant activation of transcription factors including androgen receptor (AR) and c-Myc. Using , and animal models, we find a direct correlation between miR-644a downregulation and dysregulation of essential cellular processes. MiR-644a downregulated expression of diverse tumor microenvironment drivers including c-Myc, AR coregulators, and antiapoptosis factors Bcl-xl and Bcl2.

View Article and Find Full Text PDF

The androgen receptor (AR) plays a critical role in the development of the normal prostate as well as prostate cancer. Using an integrative transcriptomic analysis of prostate cancer cell lines and tissues, we identified ARLNC1 (AR-regulated long noncoding RNA 1) as an important long noncoding RNA that is strongly associated with AR signaling in prostate cancer progression. Not only was ARLNC1 induced by the AR protein, but ARLNC1 stabilized the AR transcript via RNA-RNA interaction.

View Article and Find Full Text PDF

The muscle regulatory transcription factor MyoD is a master regulator of skeletal myoblast differentiation. We have previously reported that MyoD is also necessary for the elevated expression of the pro-apoptotic Bcl2 family member PUMA, and the ensuing apoptosis, that occurs in a subset of myoblasts induced to differentiate. Herein, we report the identification of a functional MyoD binding site within the extended PUMA promoter.

View Article and Find Full Text PDF

Systematic large-scale cancer genomic studies have produced numerous significant findings. These studies have not only revealed new cancer-promoting genes, but they also have identified cancer-promoting functions of previously known "housekeeping" genes. These studies have identified numerous mutations in genes which play a fundamental role in nuclear precursor mRNA splicing.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small endogenous non-coding molecules that alters gene expression through post-transcriptional regulation of messenger RNA. Compelling evidence suggest the role of miRNA in cancer biology having potential as diagnostic, prognostic and predictive biomarkers. This review summarizes the current knowledge on miRNA deregulated in prostate cancer and their role as oncogene, tumor suppressor and metastasis regulators.

View Article and Find Full Text PDF

Non-coding RNAs include many kinds of RNAs that did not encode proteins. Recent evidences reveal that ncRNAs play critical roles in initiation and progression of cancers. But it is not easy for cancer biologists and medical doctors to easily know the potential roles of ncRNAs in cancer and retrieve the information of ncRNAs under their investigations.

View Article and Find Full Text PDF

Calorie restriction (CR) is a dietary intervention known to delay aging. In order, to understand molecular mechanisms of CR, we analyzed the expression of 983 MicroRNAs (miRNAs) in the liver of female mice after 2 years of 30% CR using micro-array. 16 miRNAs demonstrated significant changes in their expression upon CR in comparison with age-matched control.

View Article and Find Full Text PDF

Population specific studies in prostate cancer (PCa) reveal a unique heterogeneous etiology. Various factors, such as genetics, environment and dietary regimen seems to determine disease progression, therapeutic resistance and rate of mortality. Enormous disparity documented in disease incidences, aggressiveness and mortality in PCa among AAs (African Americans) and CAs (Caucasian Americans) is attributed to the variations in genetics, epigenetics and their association with metabolism.

View Article and Find Full Text PDF

Formation of catalytic core of the U12-dependent spliceosome involves U6atac and U12 interaction with the 5' splice site and branch site regions of a U12-dependent intron, respectively. Beyond the formation of intermolecular helix I region between U6atac and U12 snRNAs, several other regions within these RNA molecules are predicted to form stem-loop structures. Our previous work demonstrated that the 3' stem-loop region of U6atac snRNA contains a U12-dependent spliceosome-specific targeting activity.

View Article and Find Full Text PDF

Background: Androgen Receptor (AR) gene is associated with Prostate cancer (PCa) and hence targeting androgen-and AR-signaling axis remains the most promising primary therapeutic option to treat the disease. The AR mRNA has a 6.8 kb long 3'-untranslated region (UTR) which harbors several experimentally validated and numerous predicted miRNA binding sites.

View Article and Find Full Text PDF

Complex epithelial and stromal cell interactions are required during the development and progression of prostate cancer. Regulatory small non-coding microRNAs (miRNAs) participate in the spatiotemporal regulation of messenger RNA (mRNA) and regulation of translation affecting a large number of genes involved in prostate carcinogenesis. In this study, through deep-sequencing of size fractionated small RNA libraries we profiled the miRNAs of prostate epithelial (PrEC) and stromal (PrSC) cells.

View Article and Find Full Text PDF