Neurofibromatosis-1 (NF1) is a common tumor predisposition syndrome in which affected individuals develop benign and malignant tumors. Previous studies from our laboratory and others have shown that benign tumor formation in Nf1 genetically engineered mice (GEM) requires a permissive tumor microenvironment. In the central nervous system, Nf1 loss in glia is insufficient for glioma formation unless coupled with Nf1 heterozygosity in the brain.
View Article and Find Full Text PDFSpecialized glia, termed reactive astrocytes, accompany numerous pathologic conditions affecting the central nervous system, including stroke, multiple sclerosis, and neoplasia. To better define this important cell type, we employed high-density microarray gene expression profiling using two in vitro models of reactive gliosis (stimulation with dbcAMP or IL-1beta/IFNgamma). We identified 44 differentially expressed transcripts common to both in vitro models and demonstrated that a subset of these genes are also differentially expressed in response to experimental autoimmune encephalomyelitis and focal cerebral ischemia in vivo.
View Article and Find Full Text PDFAstrocytoma (glioma) formation in neurofibromatosis type 1 (NF1) occurs preferentially along the optic pathway during the first decade of life. The molecular basis for this unique pattern of gliomagenesis is unknown. Previous studies in mouse Nf1 optic glioma models suggest that this patterning results from cooperative effects of Nf1 loss in glial cells and the action of factors derived from the surrounding Nf1+/- brain.
View Article and Find Full Text PDFThe tumor microenvironment is considered to play an important role in tumor formation and progression by providing both negative and positive signals that influence tumor cell growth. We and others have previously shown that brain tumor (glioma) formation in Nf1 genetically engineered mice requires a microenvironment composed of cells heterozygous for a targeted Nf1 mutation. Using NF1 as a model system to understand the contribution of the tumor microenvironment to glioma formation, we show that Nf1+/- brain microglia produce specific factors that promote Nf1-/- astrocyte growth in vitro and in vivo and identify hyaluronidase as one of these factors in both genetically engineered Nf1 mouse and human NF1-associated optic glioma.
View Article and Find Full Text PDF