Publications by authors named "Girijashankar V"

Rifamycin is a broad-spectrum antimicrobial drug produced commercially by submerged fermentation where the yields are far less in comparison to its demand in human drug therapy. Addressing the need, sequential mutational strain improvement was carried using UV and EtBr that resulted in improved strain yielding rifamycin SV up to 4.32 g/L.

View Article and Find Full Text PDF

Unlabelled: An attempt was made to produce bioethanol using optimized fermentation parameters and mutationally improved strain of Candida albicans. The mutant strain OMC3E6 obtained by UV irradiation followed by ethidium bromide successive mutations showed 2.6 times more glucoamylase secretion and 1.

View Article and Find Full Text PDF

Unlabelled: Production of Rifamycin SV from cheaper agro-industrial by-products using mutant strain of Amycolatopsis mediterranei OVA5-E7 in solid state fermentation (SSF) was optimized. Among the agro-based substrates used, ragi bran was found suitable for maximizing the yield of Rifamycin SV (1310 mg 100 g(-1) ds). The yield can be further enhanced to 19·7 g Kg(-1) of dry substrate by supplementing the substrate with deoiled cotton cake (10% w/w) using optimized fermentation parameters such as maintaining 80% moisture, pH 7·0, 30°C incubation temperature, inoculum 25% v/w and carrying the solid state fermenting for 9 days.

View Article and Find Full Text PDF

An efficient in vitro regeneration protocol enables mass multiplication, genetic modification and germplasm conservation of desired plants. In vitro plant regeneration was achieved from nodal segments of 18-months-old superior genotypes of Eucalyptus camaldulensis trees through direct organogenesis (DO) and direct somatic embryogenesis (DSE) pathways. Initial bud break (BB) stage occurred via DO while shoot multiplication phase followed both DO and DSE pathways.

View Article and Find Full Text PDF
Genetic transformation of eucalyptus.

Physiol Mol Biol Plants

March 2011

Eucalyptus is the second most widely planted multipurpose woody tree species in the world. It is a commercially important hardwood tree for paper and wood industries. In the past two decades, various research groups reported different genetic transformation protocols and attempts towards development of transgenic eucalyptus.

View Article and Find Full Text PDF

Great millet (Sorghum bicolor (L.) Moench) is cultivated across the world for food and fodder. It is typically grown in semiarid regions that are not suitable for cultivation of other major cereals.

View Article and Find Full Text PDF

Transgenic sorghum plants expressing a synthetic cry1Ac gene from Bacillus thuringiensis (Bt) under the control of a wound-inducible promoter from the maize protease inhibitor gene (mpiC1) were produced via particle bombardment of shoot apices. Plants were regenerated from the transformed shoot apices via direct somatic embryogenesis with an intermittent three-step selection strategy using the herbicide Basta. Molecular characterisation based on polymerase chain reaction and Southern blot analysis revealed multiple insertions of the cry1Ac gene in five plants from three independent transformation events.

View Article and Find Full Text PDF