The development of highly efficient electrocatalytic sensors is necessary for detection in various paramedical and industrial applications. Motivated by this concept, we demonstrate flower-like Ag/SrFeO nanostructures prepared by a facile route to modify electrocatalyst material for the detection of caffeic acid (CA). The surface morphology, phase structure, particle size, and pore volume were investigated through different physicochemical analytical techniques.
View Article and Find Full Text PDFCarbon-based nanomaterials continue to simulate wide interest in diverse disciplines including electrochemical biosensors, which have great ability to function as next-generation clinical diagnostics. Motivated by this point, we for the first time developed a CuAlO-encapsulated reduced graphene oxide (rGO) nanocomposite by a facile wet-chemical process to modify a glassy carbon electrode for dopamine detection with high selectivity and good sensitivity. The size, shape, phase purity, chemical composition, and surface area were investigated for the samples through transmission electron microscopy, scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and Brunauer-Emmett-Teller analysis.
View Article and Find Full Text PDF