Gingiva plays a crucial barrier role at the interface of teeth, tooth-supporting structures, microbiome, and external agents. To mimic this complex microenvironment, an in vitro microphysiological platform and biofabricated full-thickness gingival equivalents (gingiva-on-chip) within a vertically stacked microfluidic device is developed. This design allowed long-term and air-liquid interface culture, and host-material interactions under flow conditions.
View Article and Find Full Text PDFObjective: This study aims to characterize the cytotoxicity potential of silver diamine fluoride (SDF) on dental pulp stem cells (DPSC) and gingival equivalents.
Methods: DPSC cultured on 96-well plates was exposed directly to SDF (0.0001-0.
The role of angiogenesis in health and disease have gained considerable momentum in recent years. Visualizing angiogenic patterns and associated events of surrounding vascular beds in response to therapeutic and laboratory-grade biomolecules has become a commonplace in regenerative medicine and the biosciences. To achieve high-quality imaging for elucidating the molecular mechanisms of angiogenesis, the two-photon excitation fluorescence (2PEF) microscopy, or multiphoton fluorescence microscopy is increasingly utilized in scientific investigations.
View Article and Find Full Text PDFBackground And Objectives: Ageing is associated with an impaired cellular function that can affect tissue architecture and wound healing in gingival and periodontal tissues. However, the impact of oral fibroblast ageing on the structural organization of the extracellular matrix (ECM) proteins is poorly understood. Hence, in this study, we investigated the impact of cellular ageing of oral fibroblasts on the production and structural organization of collagen and other ECM proteins.
View Article and Find Full Text PDF