Publications by authors named "Girerd-Chambaz Y"

We assessed the genetic and phenotypic characteristics of a yellow fever vaccine candidate, which was cloned from a YF-VAX substrain selected for growth in Vero cells (vYF-247), during the manufacturing process from the master seed lot (MSL) and working seed lot (WSL) through to the drug substance (DS) stage. There were nine minor nucleotide variants observed from the MSL to the DS stage, of which five led to amino acid changes. The variant positions were, however, not known risks for any virulence modification.

View Article and Find Full Text PDF

Yellow fever (YF) remains a threat to human health in tropical regions of Africa and South America. Live-attenuated YF-17D vaccines have proven to be safe and effective in protecting travellers and populations in endemic regions against YF, despite very rare severe reactions following vaccination - YF vaccine-associated viscerotropic disease (YEL-AVD) and neurological disease (YEL-AND). We describe the generation and selection of a live-attenuated YF-17D vaccine candidate and present its preclinical profile.

View Article and Find Full Text PDF

Zika virus (ZIKV) is an emerging mosquito-borne pathogen representing a global health concern. It has been linked to fetal microcephaly and other birth defects and neurological disorders in adults. Sanofi Pasteur has engaged in the development of an inactivated ZIKV vaccine, as well as a live chimeric vaccine candidate ChimeriVax-Zika (CYZ) that could become a preferred vaccine depending on future ZIKV epidemiology.

View Article and Find Full Text PDF

Two phase 3 placebo-controlled trials of the CYD-TDV vaccine, evaluated in children aged 2-14 y (CYD14) and 9-16 y (CYD15), demonstrated vaccine efficacy (VE) of 56.5% and 60.8%, respectively, against symptomatic virologically confirmed dengue (VCD).

View Article and Find Full Text PDF

The recombinant yellow fever-17D-dengue virus, live, attenuated, tetravalent dengue vaccine (CYD-TDV) is licensed in several dengue-endemic countries. Although the vaccine provides protection against dengue, the level of protection differs by serotype and warrants further investigation. We characterized the antigenic properties of each vaccine virus serotype using highly neutralizing human monoclonal antibodies (hmAbs) that bind quaternary structure-dependent epitopes.

View Article and Find Full Text PDF

This study defined the genetic epidemiology of dengue viruses (DENV) in two pivotal phase III trials of the tetravalent dengue vaccine, CYD-TDV, and thereby enabled virus genotype-specific estimates of vaccine efficacy (VE). Envelope gene sequences (n = 661) from 11 DENV genotypes in 10 endemic countries provided a contemporaneous global snapshot of DENV population genetics and revealed high amino acid identity between the E genes of vaccine strains and wild-type viruses from trial participants, including at epitope sites targeted by virus neutralising human monoclonal antibodies. analysis of all CYD14/15 trial participants revealed a statistically significant genotype-level VE association within DENV-4, where efficacy was lowest against genotype I.

View Article and Find Full Text PDF

Although the enzyme-linked immunosorbent assay (ELISA) is well established for quantitating epitopes on inactivated virions used as vaccines, it is less suited for detecting potential overlaps between the epitopes recognized by different antibodies raised against the virions. We used fluorescent correlation spectroscopy (FCS) to detect the potential overlaps between 3 monoclonal antibodies (mAbs 4B7-1H8-2E10, 1E3-3G4, 4H8-3A12-2D3) selected for their ability to specifically recognize poliovirus type 3. Competition of the Alexa488-labeled mAbs with non-labeled mAbs revealed that mAbs 4B7-1H8-2E10 and 4H8-3A12-2D3 compete strongly for their binding sites on the virions, suggesting an important overlap of their epitopes.

View Article and Find Full Text PDF

The inactivated polio vaccine (IPV) contains poliovirus (PV) samples that belong to serotypes 1, 2 and 3. All three serotypes contain the D-antigen, which induces protective antibodies. The antigenic structure of PVs consists of at least four different antigenic sites and the D-antigen content represents the combined activity of multiple epitopes (Ferguson et al.

View Article and Find Full Text PDF

The inactivated polio vaccine (IPV) contains poliovirus (PVs) samples that belong to serotypes 1, 2 and 3. All three serotypes contain the D-antigen, which induces protective antibodies. The antigenic structure of PVs consists of at least four different antigenic sites and the D-antigen content represents the combined activity of multiple epitopes (Ferguson et al.

View Article and Find Full Text PDF

Purpose: Helper CD4(+) T cells presumably play a major role in controlling cytomegalovirus (CMV) by providing help to specific B and CD8(+) cytotoxic T cells, as well as through cytotoxicity-mediated mechanisms. Since CMV glycoprotein B (gB) is a major candidate for a subunit vaccine against CMV, we searched for gB-epitopes presented by human leukocyte antigen (HLA)-class II molecules.

Methods: Dendritic cells obtained from CMV-seropositive donors were loaded with a recombinant gB and co-cultured with autologous CD4(+) T cells.

View Article and Find Full Text PDF

Yellow fever-dengue chimeras (CYDs) are being developed currently as live tetravalent dengue vaccine candidates. Specific quantitative assays are needed to evaluate the viral load of each serotype in vaccine batches and biological samples. A quantitative real-time RT-PCR (qRT-PCR) system was developed comprising five one-step qRT-PCRs targeting the E/NS1 junction of each chimera, or the NS5 gene in the yellow fever backbone.

View Article and Find Full Text PDF

The immune effector cells (hemocytes) of the snail host Biomphalaria glabrata are known to play a key role in recognition and elimination of larval helminths such as the human blood fluke Schistosoma mansoni. To identify novel immune-relevant genes, we undertook an expressed sequence tag program. A hemocyte cDNA library was constructed using snails that were not exposed to a particular pathogen or parasite but maintained in non-axenic conditions.

View Article and Find Full Text PDF

Vaccination by intramuscular injection of naked DNA is very efficient in the mouse, but immunogenicity of DNA vaccines needs to be improved in man. The aim of our study was to determine in BALB/c mice if suitable electric pulses delivered to the muscle after DNA injection--a procedure called electrotransfer--could improve the immunogenicity of suboptimal doses of a DNA vaccine expressing the influenza hemagglutinin protein. The results show a significant enhancement of the cellular and antibody responses following electrotransfer for the 1- and 10-microg DNA doses, respectively, but no effect on a lower dose.

View Article and Find Full Text PDF

We have used spring powered jet injectors to deliver a solution of a naked DNA vaccine encoding the influenza hemagglutinin HA into the skin of mice and monkeys. We compared the immune responses induced by this needleless injection technique into the skin to the responses induced by a classical i.m.

View Article and Find Full Text PDF