This manuscript investigates the efficient synthesis of copper zinc tin sulfide (CZTS) nanoparticles for CZTS thin film solar cell applications with a primary focus on environmental sustainability. Underpinning the investigation is an initial life-cycle assessment (LCA) analysis. This LCA analysis is conducted to evaluate the environmental impact of different synthesis volumes, providing crucial insights into the sustainability of the synthesis process by considering the flows of material and energy associated with the process.
View Article and Find Full Text PDFMaterials (Basel)
April 2020
Although the fundamental limits have been established for the single junction solar cells, tandem configurations are one of the promising approaches to surpass these limits. One of the candidates for the top cell absorber is CdTe, as the CdTe photovoltaic technology has significant advantages: stability, high performance, and relatively inexpensive. In addition, it is possible to tune the CdTe bandgap by introducing, for example, Zn into the composition, forming CdZnTe alloys, which can fulfill the Shockley-Queisser limit design criteria for tandem devices.
View Article and Find Full Text PDFMaterials (Basel)
November 2019
As-doped polycrystalline ZnTe layers grown by metalorganic chemical vapor deposition (MOCVD) have been investigated as a back contact for CdTe solar cells. While undoped ZnTe films were essentially insulating, the doped layers showed significant rise in conductivity with increasing As concentration. High p-type carrier densities up 4.
View Article and Find Full Text PDF