Publications by authors named "Girardini J"

Hepatocellular carcinoma (HCC) associated with viral or metabolic liver diseases is a growing cancer without effective therapy. AMPK is downregulated in HCC and its activation diminishes tumor growth. Alpha lipoic acid (ALA), an indirect AMPK activator that inhibits hepatic steatosis, shows antitumor effects in different cancers.

View Article and Find Full Text PDF

Isoprenyl cysteine carboxyl methyltransferase (ICMT) catalyzes the last step of the prenylation pathway. Previously, we found that high ICMT levels enhance tumorigenesis in vivo and that its expression is repressed by the p53 tumor suppressor. Based on evidence suggesting that some ICMT substrates affect invasive traits, we wondered if this enzyme may promote metastasis.

View Article and Find Full Text PDF

Alteration of metabolism in cancer cells is a central aspect of the mechanisms that sustain aggressive traits. Aldo-keto reductase 1 B1 (AKR1B1) catalyzes the reduction of several aldehydes to alcohols consuming NADPH. Nevertheless, the ability of AKR1B1 to reduce different substrates renders difficult to comprehensively ascertain its biological role.

View Article and Find Full Text PDF

Salirasib, or farnesylthiosalicylic acid (FTS), is a salicylic acid derivative with demonstrated antineoplastic activity. While designed as a competitor of the substrate S-farnesyl cysteine on Ras, it is a potent competitive inhibitor of isoprenylcysteine carboxymethyl transferase. In this study, the antiproliferative activity on six different solid tumor cell lines was evaluated with a series of lipophilic thioether modified salirasib analogues, including those with or without a 1,2,3-triazole linker.

View Article and Find Full Text PDF

Chen et al. reveal an increase of phosphoglycerate dehydrogenase (PHGDH) mRNA and protein levels in two mouse models and four human cohorts in Alzheimer's disease brains compared to age- and sex-matched control brains. The increase of PHGDH expression in human brain correlates with symptomatic development and disease pathology.

View Article and Find Full Text PDF

Drug repositioning refers to new uses for existing drugs outside the scope of the original medical indications. This approach fastens the process of drug development allowing finding effective drugs with reduced side effects and lower costs. Colorectal cancer (CRC) is often diagnosed at advanced stages, when the probability of chemotherapy resistance is higher.

View Article and Find Full Text PDF

Missense mutations in the gene are among the most frequent alterations in human cancer. Consequently, many tumors show high expression of p53 point mutants, which may acquire novel activities that contribute to develop aggressive tumors. An unexpected aspect of mutant p53 function was uncovered by showing that some mutants can increase the malignant phenotype of tumor cells through alteration of the mevalonate pathway.

View Article and Find Full Text PDF

A series of levoglucosenone-derived 1,2,3-triazoles and isoxazoles featuring a flexible spacer between the heteroaromatic and anhydropyranose cores have been designed and synthesized following an hetero Michael // 1,3-dipolar cycloaddition path. The use of a design of experiments approach allowed the optimization of the oxa-Michael reaction with propargyl alcohol as nucleophile, a key step for the synthesis of the target compounds. All of the compounds were tested for their anticancer activity on MDA-MB-231 cells, featuring mutant p53.

View Article and Find Full Text PDF

CPSF6 is a component of the CFIm complex, involved in mRNA 3'end processing. Despite increasing interest on this protein as a consequence of proposed roles in cancer and HIV infection, several aspects of CPSF6 biological function are poorly understood. In this work we studied the expression of the zebrafish ortholog cpsf6 in early stages of embryo development.

View Article and Find Full Text PDF

CDC42 interacting protein 4 (CIP4) is a CDC42 effector that coordinates membrane deformation and actin polymerization. The correlation of CIP4 overexpression with metastatic capacity has been characterized in several types of cancer. However, little information exists on how CIP4 function is regulated.

View Article and Find Full Text PDF

Isoprenyl cysteine carboxyl methyltransferase (ICMT) plays a key role in post-translational regulation of prenylated proteins. On the basis of previous results, we hypothesized that the p53 pathway and ICMT expression may be linked in cancer cells. Here, we studied whether WT p53 and cancer-associated p53 point mutants regulate ICMT levels and whether ICMT overexpression affects tumor progression.

View Article and Find Full Text PDF

The design and synthesis of biomass-derived triazoles and the in vitro evaluation as potential anticancer agents are described. The discovery of base-catalyzed retro-aza-Michael//aza-Michael isomerizations allowed the exploration of the chemical space by affording novel types of triazoles, difficult to obtain otherwise. Following this strategy, 2,4-disubstituted 1,2,3-triazoles could be efficiently obtained from the corresponding 1,4-disubstituted analogues.

View Article and Find Full Text PDF

Hitherto, the known mechanisms underpinning cell-fate specification act on neural progenitors, affecting their commitment to generate neuron or glial cells. Here, we show that particular phospholipids supplemented in the culture media modify the commitment of post-mitotic neural cells in vitro. Phosphatidylcholine (PtdCho)-enriched media enhances neuronal differentiation at the expense of astroglial and unspecified cells.

View Article and Find Full Text PDF

The organization of epithelial cells to form hollow organs with a single lumen requires the accurate three-dimensional arrangement of cell divisions. Mitotic spindle orientation is defined by signaling pathways that provide molecular links between specific spots at the cell cortex and astral microtubules, which have not been fully elucidated. AKAP350 is a centrosomal/Golgi scaffold protein, implicated in the regulation of microtubule dynamics.

View Article and Find Full Text PDF

The prolyl isomerase Pin1 plays a key role in the modulation of proline-directed phosphorylation signaling by inducing local conformational changes in phosphorylated protein substrates. Extensive studies showed different roles for Pin1 in physiological processes and pathological conditions such as cancer and neurodegenerative diseases. However, there are still several unanswered questions regarding its biological role.

View Article and Find Full Text PDF

Following the initial findings suggesting a pro-oncogenic role for p53 point mutants, more than 30 years of research have unveiled the critical role exerted by these mutants in human cancer. A growing body of evidence, including mouse models and clinical data, has clearly demonstrated a connection between mutant p53 and the development of aggressive and metastatic tumors. Even if the molecular mechanisms underlying mutant p53 activities are still the object of intense scrutiny, it seems evident that full activation of its oncogenic role requires the functional interaction with other oncogenic alterations.

View Article and Find Full Text PDF

In the last decade intensive research has confirmed the long standing hypothesis that some p53 point mutants acquire novel activities able to cooperate with oncogenic mechanisms. Particular attention has attracted the ability of several such mutants to actively promote the development of aggressive and metastatic tumors in vivo. This knowledge opens a new dimension on rational therapy design, suggesting novel strategies based on pharmacological manipulation of those neomorphic activities.

View Article and Find Full Text PDF

Unlike several tumor suppressor genes, whose inactivation is due to deletions or truncating mutations, TP53 is most frequently hit by missense mutations in its DNA binding domain.

View Article and Find Full Text PDF

TP53 missense mutations dramatically influence tumor progression, however, their mechanism of action is still poorly understood. Here we demonstrate the fundamental role of the prolyl isomerase Pin1 in mutant p53 oncogenic functions. Pin1 enhances tumorigenesis in a Li-Fraumeni mouse model and cooperates with mutant p53 in Ras-dependent transformation.

View Article and Find Full Text PDF

Mutations in PARK7/DJ-1 are associated with autosomal recessive, early onset Parkinson disease (PD). DJ-1 is an atypical peroxiredoxin-like peroxidase that may act as a redox-dependent chaperone and a regulator of transcription. Here we show that DJ-1 plays an essential role in the expression of rearranged during transfection (RET), a receptor for the glial cell line-derived neurotrophic factor, a neuroprotective molecule for dopaminergic neurons, the main target of degeneration in PD.

View Article and Find Full Text PDF