Ultrasonic compaction, also known as ultrasonic agglomeration, is an emerging technology that represents a novel alternative for food agglomeration; it is of great interest to the food industry. This review aims to gather information on the physicochemical, organoleptic, microbiological, and structural changes generated by ultrasound and study the fundamentals of agglomeration and ultrasound in different food matrices. In addition, chemical changes are reported in some nutrients related to conformational changes, such as the disintegration of diacylglycerides into monoacylglycerols, disordering of the crystalline region of starch granules to the amorphous phase, disruption of the membrane in plant cells, and transient or permanent modification of the protein structure (3D folding).
View Article and Find Full Text PDFThis study evaluated the influence of starch-protein interactions on the chemical properties and digestibility of a 3D-printed gel based on salmon by-product protein. Changes in the starch-protein interactions of the stable cornstarch (CS, 15%) and salmon protein isolate (SPI, 4%-12%) printable gels during the in vitro gastrointestinal digestion process were studied by principal component analysis. Protein-rich printed gels increased resistant starch content by 18.
View Article and Find Full Text PDFGels
September 2023
This study aimed to optimize the 3D printing parameters of salmon gelatin gels (SGG) using artificial neural networks with the genetic algorithm (ANN-GA) and response surface methodology (RSM). In addition, the influence of the optimal parameters obtained using the two different methodologies was evaluated for the physicochemical and digestibility properties of the printed SGG (PSGG). The ANN-GA had a better fit (R = 99.
View Article and Find Full Text PDFBiofoams are a challenge for scientists in terms of innovation. Incorporation of cellulose fibrils (CF), might help improve the microstructure of foams, thus this study focuses on studying the impact of CF on the foaming properties and rheology of lentil protein (LP) foams at various pH and CF concentrations. Additionally, LP-CF mixtures were transformed into solid foams, and their microstructure, physical properties, and morphology were evaluated.
View Article and Find Full Text PDFThis study aimed to increase the encapsulation efficiency (EE%) of liposomes loaded with green tea polyphenols (GTP), by optimizing with response surface methodology (RSM), characterizing the obtained particles, and modeling their release under conventional heating and pulsed electric fields. GTP-loaded liposomes were prepared under conditions of Lecithin/Tween 80 (4:1, 1:1, and 1:4), cholesterol (0, 30, and 50%), and chitosan as coating (0, 0.05, and 0.
View Article and Find Full Text PDFThe effect of the stage (pre or post) and previous high-pressure processing (HPP; 450 and 550 MPa for 3 min) was checked during the storage on ice of farmed palm ruff (). Fish processed in pre- conditions led to higher and lower levels ( < 0.05) of moisture and lipid contents in chilled fish, respectively, when compared to their counterpart samples processed in the post- stage.
View Article and Find Full Text PDFThe purpose of this study was to apply different pulsed electric field (PEF) conditions as a pretreatment to the freeze-drying (FD) process of Chilean abalone and to assess its effects on protein quality, microstructure, and digestibility of the freeze-dried product. The treatments PEF (0.5, 1.
View Article and Find Full Text PDFThis study focused on applying different high hydrostatic pressure + carbon dioxide (HHP + CO) processing conditions on refrigerated (4 °C, 25 days) farmed coho salmon () to inactivate endogenous enzymes (protease, lipase, collagenase), physicochemical properties (texture, color, lipid oxidation), and microbial shelf life. Salmon fillets were subjected to combined HHP (150 MPa/5 min) and CO (50%, 70%, 100%). Protease and lipase inactivation was achieved with combined HHP + CO treatments in which lipase activity remained low as opposed to protease activity during storage.
View Article and Find Full Text PDFStarch-based hydrogels have received considerable interest due to their safe nature, biodegradability and biocompatibility. The aim of this study was to verify the possibility of producing natural hydrogels based on potato starch by high hydrostatic pressure (HHP), identifying suitable processing conditions allowing to obtain stable hydrogels, as well as to characterize structural and mechanical properties of these products. Sieved (small size granules and medium size granules) and unsieved potato starch samples were used to prepare aqueous suspensions of different concentrations (10-30% w/w) which were processed at 600 MPa for 15 min at different temperatures (25, 40 and 50 °C).
View Article and Find Full Text PDFAbalone (Haliotis spp.) is an exotic seafood product recognized as a protein source of high biological value. Traditional methods used to preserve foods such as drying technology can affect their nutritional quality (protein quality and digestibility).
View Article and Find Full Text PDFThe aim of this work was to study the effect of high hydrostatic pressure (HHP) on colour, dietary fibre, vitamin C content, polysaccharides content, physico-chemical and structural properties of aloe vera gel at three pressure levels (300, 400 and 500 MPa for 3 min) after 35 days of storage at 4 ± 1 °C. The results showed that HHP exerted a clear influence on most of the quality parameters studied. Moisture, protein and fat contents did not show changes with an increasing pressure.
View Article and Find Full Text PDFProtein haze development in bottled white wines is attributed to the slow denaturation of unstable proteins, which results in their aggregation and flocculation. These protein fractions can be removed by using bentonite; however, a disadvantage of this technique is its cost. The effects of high hydrostatic pressure (HHP) on wine stability were studied.
View Article and Find Full Text PDFFor the first time in literature, this study compares the process-induced chemical reactions in three industrially relevant green vegetables: broccoli, green pepper and spinach treated with thermal and high pressure high temperature (HPHT) processing. Aiming for a fair comparison, the processing conditions were selected based on the principle of equivalence. A comprehensive integration of MS-based metabolic fingerprinting techniques, advanced data preprocessing and statistical data analysis has been implemented as untargeted/unbiased multiresponse screening tool to uncover changes in the volatile fraction.
View Article and Find Full Text PDFThe effect of high hydrostatic pressure (HHP) treatment (300, 400 and 500 MPa for 1 and 3 min at 20 °C) on the microbiological shelf-life and microbiota composition of Aloe vera gel during 90 days of storage at 4 °C was investigated. Aerobic mesophilic and psychrotrophic bacteria, as well as moulds and yeasts, were enumerated after HHP treatment and through cold storage. Randomly selected isolates from the count plates were identified by standard methods and the API identification system.
View Article and Find Full Text PDFThe aim of this study was to evaluate the effects of high hydrostatic pressure treatment at three pressure levels (300, 400 and 500Mpa) on the functional and quality characteristics of Aloe vera gel including vitamin C and E, aloin, minerals, phenolic content and antioxidant activity. The results show that HHP exerted a clear influence on minerals content, vitamin C and E content, antioxidant activity, total phenolic and aloin content. After 35days of storage all treated samples presented a decrease in mineral content, except for phosphorus.
View Article and Find Full Text PDF