We report the experimental application of distributed optical fiber sensors, based on stimulated Brillouin scattering (SBS), to the monitoring of a small-scale granular slope reconstituted in an instrumented flume and subjected to artificial rainfall until failure, and to the monitoring of a volcanic rock slope. The experiments demonstrate the sensors' ability to reveal the sudden increase in soil strain that foreruns the failure in a debris flow phenomenon, as well as to monitor the fractures in the tuff rocks. This study offers an important perspective on the use of distributed optical fiber sensors in the setting up of early warning systems for landslides in both rock and unconsolidated materials.
View Article and Find Full Text PDFThis paper shows the results of the monitoring of the deformations of a tunnel, carried out using a distributed optical fiber strain sensor based on stimulated Brillouin scattering. The artificial tunnel of the national railway crosses the accumulation zone of an active landslide, the Varco d'Izzo earthflow, in the southern Italian Apennines. Severely damaged by the landslide movements, the tunnel was demolished and rebuilt in 1992 as a reinforced concrete box flanked by two deep sheet pile walls.
View Article and Find Full Text PDFThis paper concentrates on the study of the Weighted Least-squares (WLS) approaches for the generation of ground displacement time-series through Differential Interferometric SAR (DInSAR) methods. Usually, within the DInSAR framework, the Weighted Least-squares (WLS) techniques have principally been applied for improving the performance of the phase unwrapping operations as well as for better conveying the inversion of sequences of unwrapped interferograms to generate ground displacement maps. In both cases, the identification of low-coherent areas, where the standard deviation of the phase is high, is requested.
View Article and Find Full Text PDF