Publications by authors named "Giovanni Vozzi"

In the preclinical stage of drug development, 2D and 3D cell cultures under static conditions followed by animal models are utilized. However, these models are insufficient to recapitulate the complexity of human physiology. With the developing organ-on-chip (OoC) technology in recent years, human physiology and pathophysiology can be modeled better than traditional models.

View Article and Find Full Text PDF

A healthy mucus is essential for maintaining intestinal homeostasis and overall well-being. In recent years, extensive research focused on understanding the intricate interactions between mucus and the gut microbiota. Mucus-adhering bacteria play crucial roles in preserving barrier integrity, epithelial permeability and mucus architecture, as well as in the colonization resistance against pathogens.

View Article and Find Full Text PDF

Bioprinting is a rapidly evolving field, as represented by the exponential growth of articles and reviews published each year on the topic. As the number of publications increases, there is a need for an automatic tool that can help researchers do more comprehensive literature analysis, standardize the nomenclature, and so accelerate the development of novel manufacturing techniques and materials for the field. In this context, we propose an automatic keyword annotation model, based on Natural Language Processing (NLP) techniques, that can be used to find insights in the bioprinting scientific literature.

View Article and Find Full Text PDF

The availability of grafts to replace small-diameter arteries remains an unmet clinical need. Here, the validated methodology is reported for a novel hybrid tissue-engineered vascular graft that aims to match the natural structure of small-size arteries. The blood vessel mimic (BVM) comprises an internal conduit of co-electrospun gelatin and polycaprolactone (PCL) nanofibers (corresponding to the tunica intima of an artery), reinforced by an additional layer of PCL aligned fibers (the internal elastic membrane).

View Article and Find Full Text PDF

The in vitro evaluation of 3D scaffolds for bone tissue engineering in mono-cultures is a common practice; however, it does not represent the native complex nature of bone tissue. Co-cultures of osteoblasts and osteoclasts, without the addition of stimulating agents for monitoring cellular cross-talk, remains a challenge. In this study, a growth factor-free co-culture of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and human peripheral blood mononuclear cells (hPBMCs) has been established and used for the evaluation of 3D-printed scaffolds for bone tissue engineering.

View Article and Find Full Text PDF

Bioprinting technologies have been extensively studied in literature to fabricate three-dimensional constructs for tissue engineering applications. However, very few examples are currently available on clinical trials using bioprinted products, due to a combination of technological challenges (i.e.

View Article and Find Full Text PDF

Mechanisms through which mature megakaryocytes (Mks) and their progenitors sense the bone marrow extracellular matrix to promote lineage differentiation in health and disease are still partially understood. We found PIEZO1, a mechanosensitive cation channel, to be expressed in mouse and human Mks. Human mutations in PIEZO1 have been described to be associated with blood cell disorders.

View Article and Find Full Text PDF

Trachea defects that required surgical interventions are increasing in number in the recent years, especially for pediatric patients. However, current gold standards, such as biological grafts and synthetic prothesis, do not represent an effective solution, due to the lack of mimicry and regeneration capability. Bioprinting is a cutting-edge approach for the fabrication of biomimetic scaffold to empower tissue engineering toward trachea replacement.

View Article and Find Full Text PDF

This work reports the design and validation of an innovative automatic photo-cross-linking device for robotic-based in situ bioprinting. Photo-cross-linking is the most promising polymerization technique when considering biomaterial deposition directly inside a physiological environment, typical of the in situ bioprinting approach. The photo-cross-linking device was designed for the IMAGObot platform, a 5-degree-of-freedom robot re-engineered for in situ bioprinting applications.

View Article and Find Full Text PDF

In vitro platforms such as bioreactors and microfluidic devices are commonly designed to engineer tissue models as well as to replicate the crosstalk between cells and microorganisms hosted in the human body. These systems promote nutrient supply and waste removal through culture medium recirculation; consequently, they intrinsically expose cellular structures to shear stress, be it a desired mechanical stimulus to drive the cell fate or a potential inhibitor for the model maturation. Assessing the impact of shear stress on cellular or microbial cultures thus represents a crucial step to define proper environmental conditions for in vitro models.

View Article and Find Full Text PDF

In vitro models for culturing complex microbial communities are progressively being used to study the effects of different factors on the modeling of in vitro-cultured microorganisms. In previous work, we validated a 3D in vitro model of the human gut microbiota based on electrospun gelatin scaffolds covered with mucins. The aim of this study was to evaluate the effect of , a pathogen responsible for food poisoning diseases in humans, on the gut microbiota grown in the model.

View Article and Find Full Text PDF

Tendon and ligament injuries are relevant clinical problems in modern society, and the current medical approaches do not guarantee complete recovery of the physiological functionalities. Moreover, they present a non-negligible failure rate after surgery. Failures often occur at the enthesis, which is the area of tendons and ligaments insertion to bones.

View Article and Find Full Text PDF

3D bioprinting has developed tremendously in the last couple of years and enables the fabrication of simple, as well as complex, tissue models. The international space agencies have recognized the unique opportunities of these technologies for manufacturing cell and tissue models for basic research in space, in particular for investigating the effects of microgravity and cosmic radiation on different types of human tissues. In addition, bioprinting is capable of producing clinically applicable tissue grafts, and its implementation in space therefore can support the autonomous medical treatment options for astronauts in future long term and far-distant space missions.

View Article and Find Full Text PDF

Culturing the gut microbiota in models that mimic the intestinal environment is increasingly becoming a promising alternative approach to study microbial dynamics and the effect of perturbations on the gut community. Since the mucus-associated microbial populations in the human intestine differ in composition and functions from their luminal counterpart, we attempted to reproduce the microbial consortia adhering to mucus using an already established three-dimensional model of the human gut microbiota. Electrospun gelatin structures supplemented or not with mucins were inoculated with fecal samples and compared for their ability to support microbial adhesion and growth over time, as well as to shape the composition of the colonizing communities.

View Article and Find Full Text PDF

This study aims to critically analyse the workflow of the in situ bioprinting procedure, presenting a simulated neurosurgical case study, based on a real traumatic event, for collecting quantitative data in support of this innovative approach. After a traumatic event involving the head, bone fragments may have to be removed and a replacement implant placed through a highly demanding surgical procedure in terms of surgeon dexterity. A promising alternative to the current surgical technique is the use of a robotic arm to deposit the biomaterials directly onto the damaged site of the patient following a planned curved surface, which can be designed pre-operatively.

View Article and Find Full Text PDF

The application of mechanical stimulation on bone tissue engineering constructs aims to mimic the native dynamic nature of bone. Although many attempts have been made to evaluate the effect of applied mechanical stimuli on osteogenic differentiation, the conditions that govern this process have not yet been fully explored. In this study, pre-osteoblastic cells were seeded on PLLA/PCL/PHBV (90/5/5 wt.

View Article and Find Full Text PDF

The occurrence of periprosthetic femoral fractures (PFF) has increased in people with osteoporosis due to decreased bone density, poor bone quality, and stress shielding from prosthetic implants. PFF treatment in the elderly is a genuine concern for orthopaedic surgeons as no effective solution currently exists. Therefore, the goal of this study was to determine whether the design of a novel advanced medicinal therapeutic device (AMTD) manufactured from a polymeric blend in combination with a fracture fixation plate in the femur is capable of withstanding physiological loads without failure during the bone regenerative process.

View Article and Find Full Text PDF

This work presents a computational model to study the degradation behavior of polyester-based three-dimensional (3D) functionalized scaffolds for bone regeneration. As a case study, we investigated the behavior of a 3D-printed scaffold presenting a functionalized surface with ICOS-Fc, a bioactive protein able to stimulate bone regeneration and healing, inhibiting osteoclast activity. The aim of the model was to optimize the scaffold design to control its degradation and thus the release of grafted protein over time and space.

View Article and Find Full Text PDF

Bone tissue engineering has emerged as a promising strategy to overcome the limitations of current treatments for bone-related disorders, but the trade-off between mechanical properties and bioactivity remains a concern for many polymeric materials. To address this need, novel polymeric blends of poly-L-lactic acid (PLLA), polycaprolactone (PCL) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) have been explored. Blend filaments comprising PLLA/PCL/PHBV at a ratio of 90/5/5 wt% have been prepared using twin-screw extrusion.

View Article and Find Full Text PDF
Article Synopsis
  • Extrusion-based bioprinting (EBB) is a popular technology due to its user-friendly hardware and ability to print various materials.
  • Recent research is focusing on establishing a quality control loop for EBB to streamline the optimization of printing parameters, ensuring standardized results across labs, and accelerating the clinical application of bioprinted products.
  • The study explores using machine learning to create a deep learning-based control loop that monitors the printing process in real-time and optimizes printing parameters, demonstrating the potential for automation in EBB.
View Article and Find Full Text PDF

Although the adhesion of bacteria on surfaces is a widely studied process, to date, most of the works focus on a single species of microorganisms and are aimed at evaluating the antimicrobial properties of biomaterials. Here, we describe how a complex microbial community, i.e.

View Article and Find Full Text PDF

Purpose: The biochemical composition and architecture of the extracellular matrix (ECM) is known to condition development and invasiveness of neoplasms. To clarify this point, we analyzed ECM stiffness, collagen cross-linking and anisotropy in lymph nodes (LN) of Hodgkin lymphomas (HL), follicular lymphomas (FL) and diffuse large B-cell lymphomas (DLBCL), compared with non-neoplastic LN (LDN).

Methods And Results: We found increased elastic (Young's) modulus in HL and advanced FL (grade 3A) over LDN, FL grade 1-2 and DLBCL.

View Article and Find Full Text PDF

Poultry feathers are among the most abundant and polluting keratin-rich waste biomasses. In this work, we developed a one-pot microwave-assisted process for eco-friendly keratin extraction from poultry feathers followed by a direct electrospinning (ES) of the raw extract, without further purification, to obtain keratin-based bioplastics. This microwave-assisted keratin extraction (MAE) was conducted in acetic acid 70% .

View Article and Find Full Text PDF

Gelatin is a natural biopolymer extensively used for tissue engineering applications due to its similarities to the native extracellular matrix. However, the rheological properties of gelatin formulations are not ideal for extrusion-based bioprinting. In this work, we present an approach to improve gelatin bioprinting performances by using pectin as a rheology modifier of gelatin and (3-glycidyloxypropyl)trimethoxysilane (GPTMS) as a gelatin-pectin crosslinking agent.

View Article and Find Full Text PDF