Background: Accurate evaluation of unclassified sequence variants in cancer predisposition genes is essential for clinical management and depends on a multifactorial analysis of clinical, genetic, pathologic, and bioinformatic variables and assays of transcript length and abundance. The integrity of assay data in turn relies on appropriate assay design, interpretation, and reporting.
Methods: We conducted a multicenter investigation to compare mRNA splicing assay protocols used by members of the ENIGMA (Evidence-Based Network for the Interpretation of Germline Mutant Alleles) consortium.
Researchers modeling historical heights have typically relied on the restrictive assumption of a normal distribution, only the mean of which is affected by age, income, nutrition, disease, and similar influences. To avoid these restrictive assumptions, we develop a new semiparametric approach in which covariates are allowed to affect the entire distribution without imposing any parametric shape. We apply our method to a new database of height distributions for Italian provinces, drawn from conscription records, of unprecedented length and geographical disaggregation.
View Article and Find Full Text PDF