The authors address strategic planning problems for emergency medical systems (EMS). In particular, the three following critical decisions are considered: i) how many ambulances to deploy in a given territory at any given point in time, to meet the forecasted demand, yielding an appropriate response time; ii) when ambulances should be used for serving nonurgent requests and when they should better be kept idle for possible incoming urgent requests; iii) how to define an optimal mix of contracts for renting ambulances from private associations to meet the forecasted demand at minimum cost. In particular, analytical models for decision support, based on queuing theory, discrete-event simulation, and integer linear programming were presented.
View Article and Find Full Text PDFIn this article, we address the problem of designing a string with optimal complementarity properties with respect to another given string according to a given criterion. The motivation comes from a drug design application, in which the complementarity between two sequences (proteins) is measured according to the values of the hydropathic coefficients associated with the sequence elements (amino acids). We present heuristic and exact optimization algorithms, and we report on some computational experiments on amino peptides taken from Semaphorin and human Interleukin-1β, which have already been investigated in the literature using heuristic algorithms.
View Article and Find Full Text PDF