Publications by authors named "Giovanni P Terrasi"

This paper presents a finite element (FE) analysis of an anchor for prestressing of sand-coated carbon-fiber-reinforced polymer (CFRP) tendons during the manufacturing of precast elements. This anchorage is temporary and removed after 2 to 7 days, when the pretensioning is released and the concrete is finally compressed. The investigated anchor consists of a conical metal barrel and three polymer wedges.

View Article and Find Full Text PDF

The focus of this research is an investigation on the fatigue behaviour of unidirectional 3D-printed continuous carbon fibre-reinforced polymer (CFRP) tension straps with a polyamide matrix (PA12). Conventionally produced tension straps are becoming established components in the mechanical as well as the civil engineering sector, e.g.

View Article and Find Full Text PDF

We report the controlled growth of biologically active compounds: gold nanoparticles (AuNPs) in various shapes, including their green synthesis, characterization, and studies of their applications towards biological, degradation and recycling. Using spectroscopic methods, studies on responsive binding mechanisms of AuNPs with biopolymers herring sperm deoxyribonucleic acid (hsDNA), bovine serum albumin (BSA), dyes degradation study, and exquisitely gold separation studies/recovery from nanowaste, COVID-19 testing kits, and pregnancy testing kits are discussed. The sensing ability of the AuNPs with biopolymers was investigated various analytical techniques.

View Article and Find Full Text PDF

The application of CFRP bar and seawater sea-sand concrete (SSSC) in construction can overcome the shortcomings in conventional reinforced concrete, such as corrosion induced by carbonation and chloride ingress. In this study, the bond-slip behavior between an SSSC cube and CFRP bar has been investigated, and different CFRP bar surface shapes have been considered. A total of 27 specimens (9 groups) were fabricated for a pull-out test, where three types of CFRP bar with different surface shapes were used: smooth regular bars, double-wrapped bars and ribbed bars.

View Article and Find Full Text PDF

We developed a cost-effective and eco-friendly click biosynthesis of small molecule quercetin-gold quantum dots (QRT-AuQDs) involving quick conjugation using an ultrasonication method at ambient temperature by utilizing QRT and gold ions in the proportion of 0.1 : 1 (molar ratio). A comparatively very short amount of time (60 seconds) was required as compared to conventional procedures.

View Article and Find Full Text PDF

The hanger is one of the important components for through and half-through arch bridges. Conventional steel hangers are vulnerable to corrosion due to corrosive environments. Therefore, a new type of bridge hangers consisting of Carbon Fiber-Reinforced Polymer (CFRP) straps was developed recently.

View Article and Find Full Text PDF

The fretting fatigue performance of laminated, unidirectional (UD), pin-loaded, carbon fibre-reinforced polymer (CFRP) straps that can be used as bridge hanger cables was investigated at a sustained service temperature of 60 °C. The aim of this paper is to elucidate the influence of the slightly elevated service temperature on the tensile fatigue performance of CFRP straps. First, steady state thermal tests at ambient temperature and at 60 °C are presented, in order to establish the behaviour of the straps at these temperatures.

View Article and Find Full Text PDF

The performance of pretensioned, laminated, unidirectional (UD), carbon fiber reinforced polymer (CFRP) straps, that can potentially be used for example as bridge deck suspender cables or prestressed shear reinforcements for reinforced concrete slabs and beams, was investigated at elevated temperatures. This paper aims to elucidate the effects of elevated temperature specifically on the tensile performance of pretensioned, straps. Two types of tests are presented: (1) steady state thermal and (2) transient state thermal.

View Article and Find Full Text PDF

Steel cables and suspenders in bridges are at high risk of corrosion-fatigue and in some cases of fretting-fatigue in their anchorages. These factors greatly limit the service stresses of a specific cable system and involve expensive protection measures. In order to investigate the above limitations, the fretting fatigue behaviour of pin-loaded carbon fibre reinforced polymer (CFRP) straps was studied as models for corrosion-resistant bridge suspenders.

View Article and Find Full Text PDF

The bond behaviour of novel, sand-coated ultra-high modulus (UHM) carbon fibre reinforced polymers (CFRP) tendons to high performance concrete (HPC) was studied by a combined numerical and experimental approach. A series of pull-out tests revealed that the failure type can vary between sudden and continuous pull-out depending on the chosen sand coating grain size. Measuring the same shear stress vs.

View Article and Find Full Text PDF

A novel ultra-high modulus carbon fibre reinforced polymer (CFRP) prestressing tendon made from coal tar pitch-based carbon fibres was characterized in terms of high temperature tensile strength (up to 570 °C) with a series of transient thermal and steady state temperature tensile tests. Digital image correlation was used to capture the high temperature strain development during thermal and mechanical loading. Complementary thermogravimetric (TGA) and dynamic mechanical thermal (DMTA) experiments were performed on the tendons to elucidate their high temperature thermal and mechanical behaviour.

View Article and Find Full Text PDF

This paper focuses on the fretting fatigue behaviour of pin-loaded carbon-fibre-reinforced polymer (CFRP) straps studied as models for rigging systems in sailing yachts, for suspenders of arch bridges and for pendent cables in cranes. Eight straps were subjected to an ultimate tensile strength test. In total, 26 straps were subjected to a fretting fatigue test, of which ten did not fail.

View Article and Find Full Text PDF