We study the dynamic critical behavior of the Chayes-Machta dynamics for the Fortuin-Kasteleyn random-cluster model, which generalizes the Swendsen-Wang dynamics for the q-state Potts model to noninteger q, in two and three spatial dimensions, by Monte Carlo simulation. We show that the Li-Sokal bound z >or= alpha/nu is close to but probably not sharp in d = 2 and is far from sharp in d = 3, for all q. The conjecture z >or= beta/nu is false (for some values of q) in both d = 2 and d = 3.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2004
We show that linear congruential pseudo-random-number generators can cause systematic errors in Monte Carlo simulations using the Swendsen-Wang algorithm, if the lattice size is a multiple of a very large power of 2 and one random number is used per bond. These systematic errors arise from correlations within a single bond-update half-sweep. The errors can be eliminated (or at least radically reduced) by updating the bonds in a random order or in an aperiodic manner.
View Article and Find Full Text PDF