Unsafe water has severe implications for human health. Among sanitary wastewater treatment technologies, those that treat effluent in the most natural way possible (avoiding chemicals) need to be employed to minimize environmental damage upon release. Microalgae-based systems are one of the more economical and sustainable methods.
View Article and Find Full Text PDFA novel synthesis method for ordered mesoporous carbons is presented. The inverse replication of a silica template was achieved using the carbonization of sucrose within mesoporous KIT-6. Instead of liquid acid etching, as in classical nanocasting, a novel dry chlorine etching procedure for template removal is presented for the first time.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2015
There is significant interest in high-performance materials that can directly and efficiently capture water vapor, particularly from air. Herein, we report a class of novel porous carbon cuboids with unusual ultra-hydrophilic properties, over which the synergistic effects between surface heterogeneity and micropore architecture is maximized, leading to the best atmospheric water-capture performance among porous carbons to date, with a water capacity of up to 9.82 mmol g(-1) at P/P0 =0.
View Article and Find Full Text PDFSilica nanospheres are used as templates for the generation of carbide-derived carbons with monodisperse spherical mesopores (d=20-40 nm) and microporous walls. The nanocasting approach with a polycarbosilane precursor and subsequent pyrolysis, followed by silica template removal and chlorine treatment, results in carbide-derived carbons DUT-86 (DUT=Dresden University of Technology) with remarkable textural characteristics, monodisperse, spherical mesopores tunable in diameter, and very high pore volumes up to 5.0 cm3 g(-1).
View Article and Find Full Text PDFA novel approach for the fabrication of metal coated micro- and nanoparticles by functionalization with a thin polydopamine layer followed by electroless plating is reported. The particles are initially coated with polydopamine via self-polymerization. The resulting polydopamine coated particles have a surface rich in catechols and amino groups, resulting in a high affinity toward metal ions.
View Article and Find Full Text PDF