Symmetry breaking has been shown to reveal interesting phenomena in physical systems. A notable example is the fundamental work of Otto Stern and Walther Gerlach [Stern and Zerlach, Z. Physik9, 349 (1922)10.
View Article and Find Full Text PDFBiometric authentication is the recognition of human identity via unique anatomical features. The development of novel methods parallels widespread application by consumer devices, law enforcement, and access control. In particular, methods based on finger veins, as compared to face and fingerprints, obviate privacy concerns and degradation due to wear, age, and obscuration.
View Article and Find Full Text PDFWe experimentally demonstrate the utilization of adaptive optics (AO) to mitigate intra-group power coupling among linearly polarized (LP) modes in a graded-index few-mode fiber (GI FMF). Generally, in this fiber, the coupling between degenerate modes inside a modal group tends to be stronger than between modes belonging to different groups. In our approach, the coupling inside the group can be represented by a combination of orbital-angular-momentum (OAM) modes, such that reducing power coupling in OAM set tends to indicate the capability to reduce the coupling inside the group.
View Article and Find Full Text PDFDirect detection attracts much attention for its simplicity compared with coherent detection. In this Letter, we propose for the first time, to the best of our knowledge, a high-dimensional Stokes vector direct detection (HD-SVDD) receiver for mode-division multiplexing transmission in few-mode fibers where the coupled modes can be recovered without resorting to coherent detection. To the best of our knowledge, the first high-dimensional Stokes vector reception based on the proposed HD-SVDD receiver has been successfully demonstrated with a dual-spatial and dual-polarization mode at 60 Gb/s over a 200 m two-mode fiber.
View Article and Find Full Text PDFWe experimentally investigate the scattering effect on an 80 Gbit/s orbital angular momentum (OAM) multiplexed optical wireless communication link. The power loss, mode purity, cross talk, and bit error rate performance are measured and analyzed for different OAM modes under scattering levels from ballistic to diffusive regions. Results show that (i) power loss is the main impairment in the ballistic scattering, while the mode purities of different OAM modes are not significantly affected; (ii) in the diffusive scattering, however, the performance of an OAM-multiplexed link further suffers from the increased cross talk between the different OAM modes.
View Article and Find Full Text PDFOptical vortex beams that carry orbital angular momentum (OAM), also known as OAM modes, have attracted considerable interest in recent years as they can comprise an additional degree of freedom for a variety of advanced classical and quantum optical applications. While canonical methods of OAM mode generation are effective, a method that can simultaneously generate and multiplex OAM modes with low loss and over broad spectral range is still in great demand. Here, via novel design of an optical fiber device referred to as a photonic lantern, where the radial mode index ("m") is neglected, for the first time we demonstrate the simultaneous generation and multiplexing of OAM modes with low loss and over the broadest spectral range to date (550 nm).
View Article and Find Full Text PDFA comparative stability analysis of Ince-Gaussian and Hermite-Gaussian modes in elliptical core few-mode fibers is provided to inform the design of spatial division multiplexing systems. The correlation method is used to construct crosstalk matrices that characterize the spatial modes of the fiber. Up to six low-order modes are shown to exhibit about -20 dB crosstalk.
View Article and Find Full Text PDFBrillouin optical time domain analysis is the sensing of temperature and strain changes along an optical fiber by measuring the frequency shift changes of Brillouin backscattering. Because frequency shift changes are a linear combination of temperature and strain changes, their discrimination is a challenge. Here, a multicore optical fiber that has two cores is fabricated.
View Article and Find Full Text PDFLight beams can be characterized by their complex spatial profiles in both intensity and phase. Analogous to time signals, which can be decomposed into multiple orthogonal frequency functions, a light beam can also be decomposed into a set of spatial modes that are taken from an orthogonal basis. Such decomposition can potentially provide a tool for spatial spectrum analysis, which may enable stable, accurate, and robust extraction of physical object information that may not be readily achievable using traditional approaches.
View Article and Find Full Text PDFThere is interest in using orbital angular momentum (OAM) modes to increase the data speed of free-space optical communication. A prevalent challenge is the mitigation of mode-crosstalk and mode-dependent loss that is caused by the modes' lateral displacement at the data receiver. Here, the mode-crosstalk and mode-dependent loss of laterally displaced OAM modes (LG, LG) are experimentally compared to that of a Hermite-Gaussian (HG) mode subset (HG, HG).
View Article and Find Full Text PDFThe spatial modes of a 1 km elliptical core few-mode optical fiber (6 spatial modes) are analyzed by using liquid crystal on silicon spatial light modulators to measure the fiber's mode crosstalk matrix in Hermite-Gaussian, Laguerre-Gaussian, and linearly polarized spatial mode bases. It is shown that the fiber's spatial modes can be described by Hermite-Gaussian modes, which can propagate 1 km over the optical fiber with <-20 dB (1%) average mode crosstalk even when the fiber has multiple 1 cm diameter bends. The use of elliptical core few-mode optical fibers for space division multiplexing in data centers is discussed.
View Article and Find Full Text PDFIn this work, it is experimentally demonstrated that the nonseparability of vector beams (e.g., radial and azimuthal polarization) can be used to encode information for optical communication.
View Article and Find Full Text PDFInterrogating an object with a light beam and analyzing the scattered light can reveal kinematic information about the object, which is vital for applications ranging from autonomous vehicles to gesture recognition and virtual reality. We show that by analyzing the change in the orbital angular momentum (OAM) of a tilted light beam eclipsed by a moving object, lateral motion of the object can be detected in an arbitrary direction using a single light beam and without object image reconstruction. We observe OAM spectral asymmetry that corresponds to the lateral motion direction along an arbitrary axis perpendicular to the plane containing the light beam and OAM measurement axes.
View Article and Find Full Text PDFMode division multiplexing (MDM)- using a multimode optical fiber's N spatial modes as data channels to transmit N independent data streams - has received interest as it can potentially increase optical fiber data transmission capacity N-times with respect to single mode optical fibers. Two challenges of MDM are (1) designing mode (de)multiplexers with high mode selectivity (2) designing mode (de)multiplexers without cascaded beam splitting's 1/N insertion loss. One spatial mode basis that has received interest is that of orbital angular momentum (OAM) modes.
View Article and Find Full Text PDFWe experimentally demonstrate the first few-mode space division multiplexed (SDM) transmission of real-time 10Gb/s Ethernet (10GbE) traffic using commercial small form-factor pluggable SFP + transceivers without coherent detection or multiple input multiple output digital signal processing (MIMO-DSP) over 0.5km elliptical-core few-mode-fiber, achieving <-26dB crosstalk between LP(11e) and LP(11o) modes at 1.3μm.
View Article and Find Full Text PDFVector modes are spatial modes that have spatially inhomogeneous states of polarization, such as, radial and azimuthal polarization. In this work, the spatially inhomogeneous states of polarization of vector modes are used to increase the transmission data rate of free-space optical communication via mode division multiplexing. A mode (de)multiplexer for vector modes based on a liquid crystal q-plate is introduced.
View Article and Find Full Text PDFWe present a new all-digital technique to extract the wavefront of a structured light beam. Our method employs non-homogeneous polarization optics together with dynamic, digital holograms written to a spatial light modulator to measure the phase relationship between orthogonal polarization states in real-time, thereby accessing the wavefront information. Importantly, we show how this can be applied to measuring the wavefront of propagating light fields, over extended distances, without any moving components.
View Article and Find Full Text PDFSpatially coherent multicolored optical vector vortex beams were created using a tunable liquid crystal q-plate and a supercontinuum light source. The feasibility of the q-plate as a tunable spectral filter (switch) was demonstrated, and the polarization topology of the resulting vector vortex beam was mapped. Potential applications include multiplexing for broadband high-speed optical communication, ultradense data networking, and super-resolution microscopy.
View Article and Find Full Text PDFThe first experimental demonstration of a new Pancharatnam-Berry phase for light beams with spatially inhomogeneous, or vector, states of polarization referred to as the higher-order Pancharatnam-Berry phase is presented. This new geometric phase is proportional to light's total angular momentum, a sum of spin and higher dimensional orbital angular momentum, sharply contrasting the well-known Pancharatnam-Berry phase associated with the plane wave state of polarization of a spatially homogeneous light beam. The higher-order Pancharatnam-Berry phase is directly related to the rotational symmetry of a vortex-bearing electromagnetic field, associated with the rotational frequency shift of a light beam, and has implications in quantum information science as well as other physical systems such as electron vortex beams.
View Article and Find Full Text PDFExperimental measurements of the twirl and changes in the anisotropy of the constant intensity ellipse, and the rotation of the polarization singular lemon pattern a generalized vector-vortex beam experiences around the two foci due to the converging and diverging conical waves and in between, are presented and interpreted as being due to the universal form of the Gouy phase, φ(G)=mπ/2.
View Article and Find Full Text PDFA higher-order Poincaré sphere and Stokes parameter representation of the higher-order states of polarization of vector vortex beams that includes radial and azimuthal polarized cylindrical vector beams is presented. The higher-order Poincaré sphere is constructed by naturally extending the Jones vector basis of plane wave polarization in terms of optical spin angular momentum to the total optical angular momentum that includes higher dimensional orbital angular momentum. The salient properties of this representation are illustrated by its ability to describe the higher-order modes of optical fiber waveguides, more exotic vector beams, and a higher-order Pancharatnam-Berry geometric phase.
View Article and Find Full Text PDF