Publications by authors named "Giovanni K Zorzi"

Objectives: The present study was designed to verify if quercetin (QCT), a flavonoid with antioxidant and antiviral activity, and 3-O-methylquercetin (3OMQ), a quercetin C3-methoxylated derivative, present differences in their behavior against complexation with β-cyclodextrin (β-CD) and the corresponding permeation/retention trhough porcine ear skin, when incorporated into hydroxypropyl methylcellulose (HPMC) or chitosan (CS) hydrogels.

Methods: The influence of β-CD on the skin permeation/retention of QCT and 3OMQ from hydrogels is comparatively evaluated for both flavonoids using porcine ear skin in Franz cells model. The properties of the two flavonoids using the semi-empirical method Recife Model was studied.

View Article and Find Full Text PDF

Acanthamoeba keratitis is an ophthalmic disease with no specific treatment that specially affects contact lens users. The silencing of serine phosphatase (SP) and glycogen phosphorylase (GP) proteins produced by Acanthamoeba has been shown to significantly reduce the cytopathic effect, although no vehicle was proposed yet to deliver the siRNA sequences to the trophozoites. In this study, PEGylated cationic liposomes were proposed and optimized using Box-Behnken design.

View Article and Find Full Text PDF

Since the first clinical studies, knowledge in the field of gene therapy has advanced significantly, and these advances led to the development and subsequent approval of the first gene medicines. Although viral vectors-based products offer efficient gene expression, problems related to their safety and immune response have limited their clinical use. Thus, design and optimization of nonviral vectors is presented as a promising strategy in this scenario.

View Article and Find Full Text PDF

Unlabelled: Current treatments for Acanthamoeba keratitis are unspecific. Because of the presence of the resilient cyst form of the parasite, the infection is persistent. Silencing the key protein of cyst formation, glycogen phosphorylase, has shown potential for reducing encystment processes of the Acanthamoeba trophozoite.

View Article and Find Full Text PDF

This study describes the incorporation of a coumarin-rich extract from Pterocaulon balansae into nanoemulsions intended for the local treatment of ocular keratitis caused by Acanthamoeba. The n-hexane dewaxed extract of P. balansae was characterized by HPLC/PDA and UPLC/MS.

View Article and Find Full Text PDF

Innovative approaches in nanotechnology can provide drug delivery systems with a high potential in different fields. To avoid trial and error assays as a main driving force governing new designs and, furthermore, to develop successful nanosystem optimization strategies, it is of the greatest importance to develop specific characterisation techniques beyond conventional determinations of size, zeta potential and morphology. However, the application of techniques able to determine some key characteristics, such as nanostructure (i.

View Article and Find Full Text PDF

Ethanolic extracts of Achyrocline satureioides have pronounced antioxidant activity mainly due to the presence of the flavonoid quercetin. However, direct topical application of the extract is not possible due to the presence of high amounts of ethanol. In this sense, nanoemulsions arise as an alternative for topical formulation associating molecules with limited aqueous solubility.

View Article and Find Full Text PDF

Cationized polymers have been proposed as transfection agents for gene therapy. The present work aims to improve the understanding of the potential use of different cationized proteins (atelocollagen, albumin and gelatin) as nanoparticle components and to investigate the possibility of modulating the physicochemical properties of the resulting nanoparticle carriers by selecting specific protein characteristics in an attempt to improve current ocular gene-delivery approaches. The toxicity profiles, as well as internalization and transfection efficiency, of the developed nanoparticles can be modulated by modifying the molecular weight of the selected protein and the amine used for cationization.

View Article and Find Full Text PDF

Nanoparticles based on naturally-occurring biopolymers, most of them endogenous macromolecules, were designed as a versatile generation of delivery platforms for delicate bioactive molecules. The design of these nanosystems was specifically based on our recent finding about the ability of endogenous polyamine spermine (SPM) to interact with anionic biopolymers (ABs) generating ionically cross-linked nanosystems. The initial first generation of these delivery platforms, based on glycosaminoglycans and other polysaccharides, showed a very high association capacity for some delicate bioactive proteins such as growth factors, but a limited capacity to associate negatively charged molecules, such as pDNA and siRNA.

View Article and Find Full Text PDF

The synthesis of new polymers has led to dramatic enhancements in the medical field. In particular, new chemical entities provided new prospects in tissue engineering, cellular therapy and drug delivery. However, significant efforts still need to be taken in consideration in order to achieve diverse clinical applications in these fields, which is challenging because of the lack of suitable materials with desired microstructure, permeability, degradation rates, products, and suitable mechanical properties.

View Article and Find Full Text PDF

We describe the development of hybrid nanoparticles composed of cationized gelatin and the polyanions CS and DS for gene therapy in the ocular surface. The physicochemical properties of the nanoparticles that impact their bioperformance, such as average size and zeta potential, can be conveniently modulated by changing the ratio of polymers and the crosslinker. These systems associate plasmid DNA and are able to protect it from DNase I degradation.

View Article and Find Full Text PDF

5-Oxoproline (pyroglutamic acid) accumulates in glutathione synthetase deficiency, an inborn metabolic defect of the gamma-glutamyl cycle. This disorder is clinically characterized by hemolytic anemia, metabolic acidosis and severe neurological disorders. Considering that the mechanisms of brain damage in this disease are poorly known, in the present study we investigated whether oxidative stress is elicited by 5-oxoproline.

View Article and Find Full Text PDF

Citrullinemia is an inborn error of the urea cycle caused by deficient argininosuccinate synthetase, which leads to accumulation of L-citrulline and ammonia in tissues and body fluids. The main symptoms include convulsions, tremor, seizures, coma, and brain edema. The pathophysiology of the neurological signs of citrullinemia remains unclear.

View Article and Find Full Text PDF

We report a chemically-induced model of maple syrup urine disease (MSUD) in 10- and 30-day-old rats produced by subcutaneous administration of a branched-chain amino acids (BCAA) pool along with the analyses of plasma and brain amino acid levels by HPLC at 0-120 min after administration. We observed an increase of plasma leucine (Leu), isoleucine (Ile) and valine (Val) concentrations in both 10- and 30-day-old rats. These increases were accompanied by a concomitant reduction of plasma concentrations of methionine (Met), phenylalanine (Phe), tyrosine (Tyr), histidine (His), alanine (Ala), lysine (Lys), and ornithine (Orn) in 10-day-old rats and of Met, Phe, Tyr, tryptophan (Trp), and Orn in 30-day-old rats.

View Article and Find Full Text PDF

Maple syrup urine disease (MSUD) is an inherited neurometabolic disorder caused by deficiency of branched-chain alpha-keto acid dehydrogenase complex activity which leads to tissue accumulation of the branched-chain alpha-keto acids (BCKAs) alpha-ketoisocaproic acid (KIC), alpha-ketoisovaleric acid (KIV) and alpha-keto-beta-methylvaleric acid (KMV) and their respective amino acids. Neuropathologic findings characteristic of the disease are cerebral edema and atrophy, whose pathophysiology is poorly known. In the present study, we investigated the in vitro effect of BCKAs on various parameters of oxidative stress, namely chemiluminescence (CL), thiobarbituric acid-reactive substances (TBA-RS), total radical-trapping antioxidant potential (TRAP), total antioxidant reactivity (TAR), and the activities of the antioxidant enzymes catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) in cerebral cortex of 30-day-old rats.

View Article and Find Full Text PDF

Maple syrup urine disease (MSUD) is a metabolic disorder caused by the deficiency of the activity of the mitochondrial enzyme complex branched-chain L-2-keto acid dehydrogenase. The metabolic block results in tissue and body fluid accumulation of the branched-chain amino acids leucine (Leu), isoleucine and valine, as well as of their respective alpha-keto acids. Neurological sequelae are usually present in MSUD, but the pathophysiologic mechanisms of neurotoxicity are still poorly known.

View Article and Find Full Text PDF