Publications by authors named "Giovanni Coppola"

Background: As new anti‐amyloid immunotherapies emerge for Alzheimer’s disease (AD), it is clear that early diagnosis of AD pathology is crucial for treatment success. This can be challenging in atypical presentations of AD and, together with our reliance on CSF or PET scans, can, at times, lead to delayed diagnosis. Here, we further explore the possible role of plasma tau phosphorylated at threonine 217 (P‐tau217) for the detection of primary AD or AD co‐pathology when frontotemporal dementia spectrum disorders are the main clinical presentation.

View Article and Find Full Text PDF

Microglia are the resident immune cells of the central nervous system and are involved in brain development, homeostasis, and disease. New imaging and genomics technologies are revealing microglial complexity across developmental and functional states, brain regions, and diseases. We curated a set of publicly available gene expression datasets from human microglia spanning disease and health to identify sets of genes reflecting physiological and pathological microglial states.

View Article and Find Full Text PDF
Article Synopsis
  • The genetic factors contributing to stroke risk in South Asians remain largely unstudied, with a recent study examining 75,000 Pakistanis using exome-wide sequencing.
  • A specific genetic variant, NOTCH3 p.Arg1231Cys, was found to be more common in South Asians (0.58%) compared to Western Europeans (0.019%) and was significantly linked to hemorrhagic and overall stroke risk.
  • This variant accounts for about 2.0% of hemorrhagic strokes and 1.1% of all strokes in South Asians, emphasizing the importance of including diverse populations in genetic research for better understanding and treatment of stroke.
View Article and Find Full Text PDF

Progressive supranuclear palsy (PSP), a rare Parkinsonian disorder, is characterized by problems with movement, balance, and cognition. PSP differs from Alzheimer's disease (AD) and other diseases, displaying abnormal microtubule-associated protein tau by both neuronal and glial cell pathologies. Genetic contributors may mediate these differences; however, the genetics of PSP remain underexplored.

View Article and Find Full Text PDF
Article Synopsis
  • Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease linked to abnormal tau protein accumulation, and previous studies were limited in exploring rare genetic variants due to the use of genotype arrays.* -
  • In this study, whole genome sequencing (WGS) on a large cohort allowed researchers to confirm known genetic loci related to PSP and discover new associations, particularly highlighting a different role for the APOE ε2 allele compared to Alzheimer's disease.* -
  • The findings expand knowledge of PSP's genetic underpinnings and identify potential targets for future research into the disease's mechanisms and treatments.*
View Article and Find Full Text PDF
Article Synopsis
  • Pathogenic heterozygous mutations in the GRN gene are a significant cause of frontotemporal dementia (FTD), leading to lower levels of the progranulin protein in biofluids, which has sparked therapeutic trials aimed at increasing these levels.
  • A systematic review of literature on biofluid PGRN concentrations included data from 7071 individuals, primarily focusing on plasma PGRN levels derived from a single assay type, which accounted for variations based on mutation type, age, sex, and clinical diagnosis.
  • Key findings established specific concentration cut-offs for plasma (74.8 ng/mL) and CSF (3.43 ng/mL) and indicated that plasma PGRN levels vary by mutation type,
View Article and Find Full Text PDF

Importance: The chromosome 17q21.31 region, containing a 900 Kb inversion that defines H1 and H2 haplotypes, represents the strongest genetic risk locus in progressive supranuclear palsy (PSP). In addition to H1 and H2, various structural forms of 17q21.

View Article and Find Full Text PDF

Aging-related memory impairment and pathological memory disorders such as Alzheimer's disease differ between males and females, and yet little is known about how aging-related changes in the transcriptome and chromatin environment differ between sexes in the hippocampus. To investigate this question, we compared the chromatin accessibility landscape and gene expression/alternative splicing pattern of young adult and aged mouse hippocampus in both males and females using ATAC-seq and RNA-seq. We detected significant aging-dependent changes in the expression of genes involved in immune response and synaptic function and aging-dependent changes in the alternative splicing of myelin sheath genes.

View Article and Find Full Text PDF
Article Synopsis
  • Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease linked to tau protein accumulation, and previous studies using genotype arrays overlooked important genetic variations like rare variants and structural changes.* -
  • This study utilized whole genome sequencing (WGS) involving 1,718 PSP patients and 2,944 controls, confirming known genetic markers and discovering new associations, including the unique role of the ε2 allele as a risk factor.* -
  • The findings from this research advance the understanding of PSP genetics, highlighting potential new targets for disease mechanisms and treatment strategies.*
View Article and Find Full Text PDF

Peripheral nerves regenerate successfully; however, clinical outcome after injury is poor. We demonstrated that low-dose ionizing radiation (LDIR) promoted axon regeneration and function recovery after peripheral nerve injury (PNI). Genome-wide CpG methylation profiling identified LDIR-induced hypermethylation of the Fmn2 promoter, exhibiting injury-induced Fmn2 downregulation in dorsal root ganglia (DRGs).

View Article and Find Full Text PDF

Anterior Uveitis (AU) is the inflammation of the anterior part of the eye, the iris and ciliary body and is strongly associated with HLA-B*27. We report AU exome sequencing results from eight independent cohorts consisting of 3,850 cases and 916,549 controls. We identify common genome-wide significant loci in HLA-B (OR = 3.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system that presents a largely unknown etiopathology. The presence of reactive astrocytes in MS lesions has been described for a long time; however, the role that these cells play in the pathophysiology of MS is still not fully understood. Recently, we used an MS animal model to perform high-throughput sequencing of astrocytes' transcriptome during disease progression.

View Article and Find Full Text PDF

Polypyrimidine tract binding protein 1 (PTBP1) is thought to be expressed only at embryonic stages in central neurons. Its down-regulation triggers neuronal differentiation in precursor and non-neuronal cells, an approach recently tested for generation of neurons de novo for amelioration of neurodegenerative disorders. Moreover, PTBP1 is replaced by its paralog PTBP2 in mature central neurons.

View Article and Find Full Text PDF

Human genetic studies of smoking behavior have been thus far largely limited to common variants. Studying rare coding variants has the potential to identify drug targets. We performed an exome-wide association study of smoking phenotypes in up to 749,459 individuals and discovered a protective association in CHRNB2, encoding the β2 subunit of the α4β2 nicotine acetylcholine receptor.

View Article and Find Full Text PDF

Introduction: The aim of this study was to explore the early efficacy and safety of treatment with intravitreal injections (IVIs) of brolucizumab in patients presenting with neovascular age-related macular degeneration (nAMD) in a real-world setting.

Methods: This retrospective study included 194 eyes of 180 patients with nAMD treated with standard 6-mg IVIs of brolucizumab in our clinic between March 11, 2021, and June 15, 2022. Both treatment-naive (33 eyes) and switch therapy patients (161 eyes) were included in the study.

View Article and Find Full Text PDF

Adult central nervous system (CNS) axons fail to regenerate after injury, and master regulators of the regenerative program remain to be identified. We analyzed the transcriptomes of retinal ganglion cells (RGCs) at 1 and 5 days after optic nerve injury with and without a cocktail of strongly pro-regenerative factors to discover genes that regulate survival and regeneration. We used advanced bioinformatic analysis to identify the top transcriptional regulators of upstream genes and cross-referenced these with the regulators upstream of genes differentially expressed between embryonic RGCs that exhibit robust axon growth vs.

View Article and Find Full Text PDF

Glioblastoma (GBM) is characterized by extensive microvascular hyperproliferation. In addition to supplying blood to the tumor, GBM vessels also provide trophic support to glioma cells and serve as conduits for migration into the surrounding brain, promoting recurrence. Here, we enrich CD31-expressing glioma vascular cells (GVCs) and A2B5-expressing glioma tumor cells (GTCs) from primary GBM and use RNA sequencing to create a comprehensive molecular interaction map of the secreted and extracellular factors elaborated by GVCs that can interact with receptors and membrane molecules on GTCs.

View Article and Find Full Text PDF

Glaucoma is a leading cause of blindness. Current glaucoma medications work by lowering intraocular pressure (IOP), a risk factor for glaucoma, but most treatments do not directly target the pathological changes leading to increased IOP, which can manifest as medication resistance as disease progresses. To identify physiological modulators of IOP, we performed genome- and exome-wide association analysis in >129,000 individuals with IOP measurements and extended these findings to an analysis of glaucoma risk.

View Article and Find Full Text PDF

Adult mammalian injured axons regenerate over short-distance in the peripheral nervous system (PNS) while the axons in the central nervous system (CNS) are unable to regrow after injury. Here, we demonstrated that Lycium barbarum polysaccharides (LBP), purified from Wolfberry, accelerated long-distance axon regeneration after severe peripheral nerve injury (PNI) and optic nerve crush (ONC). LBP not only promoted intrinsic growth capacity of injured neurons and function recovery after severe PNI, but also induced robust retinal ganglion cell (RGC) survival and axon regeneration after ONC.

View Article and Find Full Text PDF

Predicting the function of noncoding variation is a major challenge in modern genetics. In this study, we used massively parallel reporter assays to screen 5706 variants identified from genome-wide association studies for both Alzheimer's disease (AD) and progressive supranuclear palsy (PSP), identifying 320 functional regulatory variants (frVars) across 27 loci, including the complex 17q21.31 region.

View Article and Find Full Text PDF

To better understand the genetics of hearing loss, we performed a genome-wide association meta-analysis with 125,749 cases and 469,497 controls across five cohorts. We identified 53/c loci affecting hearing loss risk, including common coding variants in COL9A3 and TMPRSS3. Through exome sequencing of 108,415 cases and 329,581 controls, we observed rare coding associations with 11 Mendelian hearing loss genes, including additive effects in known hearing loss genes GJB2 (Gly12fs; odds ratio [OR] = 1.

View Article and Find Full Text PDF

Introduction: Use of online registries to efficiently identify older adults with cognitive decline and Alzheimer's disease (AD) is an approach with growing evidence for feasibility and validity. Linked biomarker and registry data can facilitate AD clinical research.

Methods: We collected blood for plasma biomarker and genetic analysis from older adult Brain Health Registry (BHR) participants, evaluated feasibility, and estimated associations between demographic variables and study participation.

View Article and Find Full Text PDF

In Huntington's disease (HD), the uninterrupted CAG repeat length, but not the polyglutamine length, predicts disease onset. However, the underlying pathobiology remains unclear. Here, we developed bacterial artificial chromosome (BAC) transgenic mice expressing human mutant huntingtin (mHTT) with uninterrupted, and somatically unstable, CAG repeats that exhibit progressive disease-related phenotypes.

View Article and Find Full Text PDF