Publications by authors named "Giovanni Chesi"

We study the work fluctuations in ergotropic heat engines, namely two-stroke quantum Otto engines where the work stroke is designed to extract the ergotropy (the maximum amount of work by a cyclic unitary evolution) from a couple of quantum systems at canonical equilibrium at two different temperatures, whereas the heat stroke thermalizes back the systems to their respective reservoirs. We provide an exhaustive study for the case of two qutrits whose energy levels are equally spaced at two different frequencies by deriving the complete work statistics. By varying the values of temperatures and frequencies, only three kinds of optimal unitary strokes are found: the swap operator U1, an idle swap U2 (where one of the qutrits is regarded as an effective qubit), and a non-trivial permutation of energy eigenstates U3, which indeed corresponds to the composition of the two previous unitaries, namely U3=U2U1.

View Article and Find Full Text PDF

A promising alternative to bulk materials for the nonlinear coupling of optical fields is provided by photonic integrated circuits based on heterostructures made of asymmetric-coupled quantum wells. These devices achieve a huge nonlinear susceptivity but are affected by strong absorption. Here, driven by the technological relevance of the SiGe material system, we focus on Second-Harmonic Generation in the mid-infrared spectral region, realized by means of Ge-rich waveguides hosting p-type Ge/SiGe asymmetric coupled quantum wells.

View Article and Find Full Text PDF

Silicon Photomultipliers are potentially ideal detectors for Quantum Optics and Quantum Information studies based on mesoscopic states of light. However, their non-idealities hampered their use so far. An optimal mode of operation has been developed and it is presented here, proving that this class of sensors can actually be exploited for the characterization of both classical and quantum properties of light.

View Article and Find Full Text PDF

Detector stochastic deviations from an ideal response can hamper the measurement of quantum properties of light, especially in the mesoscopic regime where photon-number resolution is required. We demonstrate that, by proper analysis of the output signal, nonclassicality of twin-beam states can be detected and exploited with commercial and cost-effective silicon-based photon-number-resolving detectors.

View Article and Find Full Text PDF