Publications by authors named "Giovanni Carapezza"

Inhibition of kinase gene fusions (KGFs) has proven successful in cancer treatment and continues to represent an attractive research area, due to kinase druggability and clinical validation. Indeed, literature and public databases report a remarkable number of KGFs as potential drug targets, often identified by in vitro characterization of tumor cell line models and confirmed also in clinical samples. However, KGF molecular and experimental information can sometimes be sparse and partially overlapping, suggesting the need for a specific annotation database of KGFs, conveniently condensing all the molecular details that can support targeted drug development pipelines and diagnostic approaches.

View Article and Find Full Text PDF

Next-Generation Sequencing (NGS) is a high-throughput technology widely applied to genome sequencing and transcriptome profiling. RNA-Seq uses NGS to reveal RNA identities and quantities in a given sample. However, it produces a huge amount of raw data that need to be preprocessed with fast and effective computational methods.

View Article and Find Full Text PDF

Background: Protein kinases are enzymes controlling different cellular functions. Genetic alterations often result in kinase dysregulation, making kinases a very attractive class of druggable targets in several human diseases. Existing approved drugs still target a very limited portion of the human 'kinome', demanding a broader functional knowledge of individual and co-expressed kinase patterns in physiologic and pathologic settings.

View Article and Find Full Text PDF

Chordomas are rare, slowly growing tumors with high medical need, arising in the axial skeleton from notochord remnants. The transcription factor "brachyury" represents a distinctive molecular marker and a key oncogenic driver of chordomas. Tyrosine kinase receptors are also expressed, but so far kinase inhibitors have not shown clear clinical efficacy in chordoma patients.

View Article and Find Full Text PDF

Background: Kinase over-expression and activation as a consequence of gene amplification or gene fusion events is a well-known mechanism of tumorigenesis. The search for novel rearrangements of kinases or other druggable genes may contribute to understanding the biology of cancerogenesis, as well as lead to the identification of new candidate targets for drug discovery. However this requires the ability to query large datasets to identify rare events occurring in very small fractions (1-3 %) of different tumor subtypes.

View Article and Find Full Text PDF

Recent advances in synthetic biology call for robust, flexible and efficient in silico optimization methodologies. We present a Pareto design approach for the bi-level optimization problem associated to the overproduction of specific metabolites in Escherichia coli. Our method efficiently explores the high dimensional genetic manipulation space, finding a number of trade-offs between synthetic and biological objectives, hence furnishing a deeper biological insight to the addressed problem and important results for industrial purposes.

View Article and Find Full Text PDF

Analyzing and optimizing biological models is often identified as a research priority in biomedical engineering. An important feature of a model should be the ability to find the best condition in which an organism has to be grown in order to reach specific optimal output values chosen by the researcher. In this work, we take into account a mitochondrial model analyzed with flux-balance analysis.

View Article and Find Full Text PDF

In low and high eukaryotes, energy is collected or transformed in compartments, the organelles. The rich variety of size, characteristics, and density of the organelles makes it difficult to build a general picture. In this paper, we make use of the Pareto-front analysis to investigate the optimization of energy metabolism in mitochondria and chloroplasts.

View Article and Find Full Text PDF

The bioenergetic activity of mitochondria can be thoroughly investigated by using computational methods. In particular, in our work we focus on ATP and NADH, namely the metabolites representing the production of energy in the cell. We develop a computational framework to perform an exhaustive investigation at the level of species, reactions, genes and metabolic pathways.

View Article and Find Full Text PDF

In this work, we develop methodologies for analyzing and cross comparing metabolic models. We investigate three important metabolic networks to discuss the complexity of biological organization of organisms, modeling, and system properties. In particular, we analyze these metabolic networks because of their biotechnological and basic science importance: the photosynthetic carbon metabolism in a general leaf, the Rhodobacter spheroides bacterium, and the Chlamydomonas reinhardtii alga.

View Article and Find Full Text PDF

Motivation: Metabolic engineering algorithms provide means to optimize a biological process leading to the improvement of a biotechnological interesting molecule. Therefore, it is important to understand how to act in a metabolic pathway in order to have the best results in terms of productions. In this work, we present a computational framework that searches for optimal and robust microbial strains that are able to produce target molecules.

View Article and Find Full Text PDF