Dielectric barrier discharge plasma and photocatalysis have been proposed as tools for decontamination of process water, especially in food industry. The present investigation aims to redefine and identify the features of coupling the two technologies in terms of degradation efficiency of a model compound. Results show that, when the process is carried out in plasma activated water in the presence of irradiated TiO, the efficiency of the integrated process is lower than the sum of the two processes acting separately.
View Article and Find Full Text PDFNitrate and bromide ions are generally considered indicators of anthropogenic pollution and seawater intrusion, respectively, in the groundwater of coastal territories. The analysis of these species is generally carried out with routine chromatographic analyses which generally afford partially merged or poorly resolved peaks. In the present paper a simple method for the correct evaluation of their concentration in water is reported.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2016
Significant production of elemental bromine (Br2 ) was observed for the first time when treating bromide containing solutions at acidic pH, with TiO2 photocatalyst, ozone, or a combination thereof. Br2 selectivities up to approximately 85 % were obtained and the corresponding bromine mass balance values satisfied. The process is general and may be applied at a laboratory scale for green bromination reactions, or industrially as a cheap, safe, and environmentally sustainable alternative to the currently applied bromine production methods.
View Article and Find Full Text PDFHeterogeneous photocatalysis and photoelectrocatalysis have been considered as oxidation technologies to abate unselectively noxious species. This article focuses instead on the utilization of these methods for selective syntheses of organic molecules. Some promising reactions have been reported in the presence of various TiO2 samples and the important role played by the amorphous phase has been discussed.
View Article and Find Full Text PDFIn membrane reactors, the interaction of reaction and membrane separation can be exploited to achieve a "process intensification", a key objective of sustainable development. In the present work, the properties that the membrane must have to obtain this result in a pervaporation reactor are analyzed and discussed. Then, the methods to enhance these properties are investigated for the photocatalytic synthesis of vanillin, which represents a case where the recovery from the reactor of vanillin by means of pervaporation while it is produced allows a substantial improvement of the yield, since its further oxidation is thus prevented.
View Article and Find Full Text PDFPhotochem Photobiol Sci
May 2009
The experimental results obtained for the photocatalytic degradation of a model organic dye in an annular slurry reactor are analyzed with the aid of a mathematical model. The model is used also to study the effects on the performances of many operative conditions: flow rate, photocatalyst concentration, power of the lamp, size of the photocatalytic particles, dimensions of the reactor. The investigation demonstrates that the rate of the process is often limited by the radiant energy transfer and that some simple rules can be followed in order to optimize different yields and the observed rate of reaction.
View Article and Find Full Text PDFA two phases process consisting of a soya lecithin (SL)-based soil washing process followed by the photocatalytic treatment of resulting effluents was developed and applied at the laboratory scale in the remediation of an actual-site soil historically contaminated by 0.65 g/kg of polychlorinated biphenyls (PCBs). Triton X-100 (TX) was employed in the same process as a control surfactant.
View Article and Find Full Text PDF