Laryngeal dystonia (LD) is an isolated, task-specific, focal dystonia characterized by intermittent spasms of laryngeal muscles impairing speech production. Although recent studies have demonstrated neural alterations in LD, the consistency of findings across studies is not well-established, limiting their translational applicability. We conducted a systematic literature search to identify studies reporting stereotactic coordinates of peak structural and functional abnormalities in LD patients compared to healthy controls, followed by a coordinate-based activation likelihood estimation meta-analysis.
View Article and Find Full Text PDFBackground And Objective: Laryngeal dystonia (LD) is focal task-specific dystonia, predominantly affecting speech but not whispering or emotional vocalizations. Prior neuroimaging studies identified brain regions forming a dystonic neural network and contributing to LD pathophysiology. However, the underlying temporal dynamics of these alterations and their contribution to the task-specificity of LD remain largely unknown.
View Article and Find Full Text PDFBackground And Objectives: Progressive focal anterior temporal lobe (ATL) neurodegeneration has been historically called semantic dementia. More recently, semantic variant primary progressive aphasia (svPPA) and semantic behavioral variant frontotemporal dementia (sbvFTD) have been linked with predominant left and right ATL neurodegeneration, respectively. Nonetheless, clinical tools for an accurate diagnosis of sbvFTD are still lacking.
View Article and Find Full Text PDFIsolated dystonia is a neurological disorder of diverse etiology, multifactorial pathophysiology, and wide spectrum of clinical presentations. We review the recent neuroimaging advances that led to the conceptualization of dystonia as a neural network disorder and discuss how current knowledge is shaping the identification of biomarkers of dystonia and the development of novel pharmacological therapies.
View Article and Find Full Text PDFThe logopenic variant of primary progressive aphasia (lvPPA) is a neurodegenerative syndrome characterized linguistically by gradual loss of repetition and naming skills, resulting from left posterior temporal and inferior parietal atrophy. Here, we sought to identify which specific cortical loci are initially targeted by the disease (epicenters) and investigate whether atrophy spreads through pre-determined networks. First, we used cross-sectional structural MRI data from individuals with lvPPA to define putative disease epicenters using a surface-based approach paired with an anatomically-fine-grained parcellation of the cortical surface (i.
View Article and Find Full Text PDFSemantic variant primary progressive aphasia is a clinical syndrome characterized by marked semantic deficits, anterior temporal lobe atrophy and reduced connectivity within a distributed set of regions belonging to the functional network associated with semantic processing. However, to fully depict the clinical signature of semantic variant primary progressive aphasia, it is necessary to also characterize preserved neural networks and linguistic abilities, such as those subserving speech production. In this case-control observational study, we employed whole-brain seed-based connectivity on task-free MRI data of 32 semantic variant primary progressive aphasia patients and 46 healthy controls to investigate the functional connectivity of the speech production network and its relationship with the underlying grey matter.
View Article and Find Full Text PDFTask-based functional MRI (tb-fMRI) represents an extremely valuable approach for the identification of language eloquent regions for presurgical mapping in patients with brain tumors. However, its routinely application is limited by patient-related factors, such as cognitive disability and difficulty in coping with long-time acquisitions, and by technical factors, such as lack of equipment availability for stimuli delivery. Resting-state fMRI (rs-fMRI) instead, allows the identification of distinct language networks in a 10-min acquisition without the need of performing active tasks and using specific equipment.
View Article and Find Full Text PDFBackground And Purpose: The ventral occipitotemporal cortex (vOT) is a region crucial for reading acquisition through selective tuning to printed words. Developmental dyslexia is a disorder of reading with underlying neurobiological bases often associated with atypical neural responses to printed words. Previous studies have discovered anomalous structural development and function of the vOT in individuals with dyslexia.
View Article and Find Full Text PDFBackground And Purpose: Manual segmentation of white matter (WM) bundles requires extensive training and is prohibitively labor-intensive for large-scale studies. Automated segmentation methods are necessary in order to eliminate operator dependency and to enable reproducible studies. Significant changes in the WM landscape throughout childhood require flexible methods to capture the variance across the span of brain development.
View Article and Find Full Text PDFDyslexia is a neurodevelopmental disorder mainly defined by reading difficulties. During reading, individuals with dyslexia exhibit hypoactivity in left-lateralized language systems. Lower activity in one brain circuit can be accompanied by greater activity in another, and, here, we examined whether right-hemisphere-based emotional reactivity may be elevated in dyslexia.
View Article and Find Full Text PDFBackground: Semantic variant primary progressive aphasia (svPPA), a clinical syndrome characterized by loss of semantic knowledge, is associated with neurodegeneration that starts in the anterior temporal lobe (ATL) and gradually spreads towards posterior temporal and medial frontal areas. At the earliest stages, atrophy may be predominantly lateralized to either the left or right ATL, leading to different clinical profiles with greatest impairment of word comprehension or visual/social semantics, respectively.
Methods & Procedures: We report the in-depth longitudinal investigation of cognitive and neuroanatomical features of JB, an unusual case of ATL neurodegeneration with relative sparing of left lateral ATL regions.
Objective: To understand whether the clinical phenotype of nonfluent/agrammatic primary progressive aphasia (nfvPPA) could present differences depending on the patient's native language.
Methods: In this cross-sectional study, we analyzed connected speech samples in monolingual English (nfvPPA-E) and Italian speakers (nfvPPA-I) who were diagnosed with nfvPPA and matched for age, sex, and Mini-Mental State Examination scores. Patients also received a comprehensive neuropsychological battery.
Intrinsic connectivity networks (ICNs) identified through task-free fMRI (tf-fMRI) offer the opportunity to investigate human brain circuits involved in language processes without requiring participants to perform challenging cognitive tasks. In this study, we assessed the ability of tf-fMRI to isolate reproducible networks critical for specific language functions and often damaged in primary progressive aphasia (PPA). First, we performed whole-brain seed-based correlation analyses on tf-fMRI data to identify ICNs anchored in regions known for articulatory, phonological, and semantic processes in healthy male and female controls (HCs).
View Article and Find Full Text PDFThe semantic variant of primary progressive aphasia (svPPA) is a clinical syndrome characterized by semantic memory deficits with relatively preserved motor speech, syntax, and phonology. There is consistent evidence linking focal neurodegeneration of the anterior temporal lobes (ATL) to the semantic deficits observed in svPPA. Less is known about large-scale functional connectivity changes in this syndrome, particularly regarding the interplay between affected and spared language networks that leads to the unique cognitive dissociations typical of svPPA.
View Article and Find Full Text PDFJ Neurol Neurosurg Psychiatry
September 2019
Objective: To investigate in-vivo cortical gyrification patterns measured by the local gyrification index (lGI) in presymptomatic expansion carriers compared with healthy controls, and investigate relationships between lGI and cortical thickness, an established morphometric measure of neurodegeneration.
Methods: We assessed cortical gyrification and thickness patterns in a cohort of 15 presymptomatic expansion carriers (age 43.7 ± 10.
Objectives: To determine the directionality of regional interactions and influences of one region on another within the functionally abnormal sensorimotor network in isolated focal dystonia.
Methods: A total of 40 patients with spasmodic dysphonia with and without dystonic tremor of voice and 35 healthy controls participated in the study. Independent component analysis (ICA) of resting-state fMRI was used to identify 4 abnormally coupled brain regions within the functional sensorimotor network in all patients compared to controls.
Time is a fundamental dimension of everyday experiences. We can unmistakably sense its passage and adjust our behavior accordingly. Despite its ubiquity, the neuronal mechanisms underlying the capacity to perceive time remains unclear.
View Article and Find Full Text PDFProcessing a famous face involves a cascade of steps including detecting the presence of a face, recognizing it as familiar, accessing semantic/biographical information about the person, and finally, if required, production of the proper name. Decades of neuropsychological and neuroimaging studies have identified a network of occipital and temporal brain regions ostensibly comprising the 'core' system for face processing. Recent research has also begun to elucidate upon an 'extended' network, including anterior temporal and frontal regions.
View Article and Find Full Text PDF