In recent years, there has been growing attention to designing synthetic protocells, capable of mimicking micrometric and multicompartmental structures and highly complex physicochemical and biological processes with spatiotemporal control. Controlling metabolism-like cascade reactions in coacervate protocells is still challenging since signal transduction has to be involved in sequential and parallelized actions mediated by a pH change. Herein, we report the hierarchical construction of membraneless and multicompartmentalized protocells composed of (i) a cytosol-like scaffold based on complex coacervate droplets stable under flow conditions, (ii) enzyme-active artificial organelles and a substrate nanoreservoir capable of triggering a cascade reaction between them in response to a pH increase, and (iii) a signal transduction component based on the urease enzyme capable of the conversion of an exogenous biological fuel (urea) into an endogenous signal (ammonia and pH increase).
View Article and Find Full Text PDFWe report the synthesis of phosphorylated polyesters by the phosphorylation of hydroxylated polyesters synthesized by the lipase-catalyzed polycondensation of glycerol and aliphatic dicarboxylic acids and their characterization. The use of phosphoryl chloride as a phosphorylating agent and triethylamine as a catalyst in mild reaction conditions resulted in polyesters with repetitive units structurally similar to phospholipids, molar mass of around 14-38 kDa, and a degree of phosphorylation of 36 ± 11 mol %. These polyesters are composed mainly of 10 different repetitive units as determined by 1D and 2D NMR.
View Article and Find Full Text PDFThe mechanism for thelipase B (CALB)-catalyzed polycondensation of glycerol and sebacic acid in polar solvents was proposed based on the profile of formation and consumption of the glyceridic species in the reaction media and on the occurrence of the acyl migration reaction. The acyl migration is mainly responsible for the esterification of the secondary hydroxyl of glycerol and in an opposite way to the regioselective CALB-catalyzed esterification of primary hydroxyls. The enzymatic esterification of glycerol primary hydroxyls occurs preferentially up to carboxylic acid conversions of approximately 0.
View Article and Find Full Text PDFIn the last few decades, many efforts have been made to make poly(3-hydroxybutyrate) (PHB) and its copolymers more suitable for industrial production and large-scale use. Plasticization, especially using biodegradable oligomeric plasticizers, has been one of the strategies for this purpose. However, PHB and its copolymers generally present low miscibility with plasticizers.
View Article and Find Full Text PDFImmobilized lipase B (CALB)-catalyzed polycondensation of glycerol and sebacic acid at mild reaction conditions resulted in branched poly(glycerol sebacate) (PGS). To understand how PGS chains grow and branch, the kinetics of the CALB-catalyzed polycondensation were studied. The influence of the reaction temperature, solvent, CALB amount, and sebacic acid/glycerol feed ratio on the poly(glycerol sebacate) (PGS) molecular weight, degree of branching, and glyceridic repetitive unit distribution was also investigated.
View Article and Find Full Text PDF