Publications by authors named "Giovanni B Brandani"

Polymer modeling has been playing an increasingly important role in complementing 3D genome experiments, both to aid their interpretation and to reveal the underlying molecular mechanisms. This chapter illustrates an application of Hi-C metainference, a Bayesian approach to explore the 3D organization of a target genomic region by integrating experimental contact frequencies into a prior model of chromatin. The method reconstructs the conformational ensemble of the target locus by combining molecular dynamics simulation and Monte Carlo sampling from the posterior probability distribution given the data.

View Article and Find Full Text PDF

We have performed classical molecular dynamics simulations using the fully polarizable Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) forcefield implemented within the Tinker package to determine whether a more adequate treatment of electrostatics is sufficient to correctly describe the mixing of methane with water under high pressure conditions. We found a significant difference between the ability of AMOEBA and other classical, computationally cheaper forcefields, such as TIP3P, simple point charge-extended, TIP4P, and optimized potentials for liquid simulations-all atom. While the latter models fail to detect any effect of pressure on the miscibility of methane in water, AMOEBA qualitatively captures the experimental observation of the increased solubility of methane in water with pressure.

View Article and Find Full Text PDF

Chromatin, the complex assembly of DNA and associated proteins, plays a pivotal role in orchestrating various genomic functions. To aid our understanding of the principles underlying chromatin organization, we introduce Hi-C metainference, a Bayesian approach that integrates Hi-C contact frequencies into multiscale prior models of chromatin. This approach combines both bottom-up (the physics-based prior) and top-down (the data-driven posterior) strategies to characterize the 3D organization of a target genomic locus.

View Article and Find Full Text PDF

The soil bacterium is a model organism to investigate the formation of biofilms, the predominant form of microbial life. The secreted protein BslA self-assembles at the surface of the biofilm to give the biofilm its characteristic hydrophobicity. To understand the mechanism of BslA self-assembly at interfaces, here we built a molecular model based on the previous BslA crystal structure and the crystal structure of the BslA paralogue YweA that we determined.

View Article and Find Full Text PDF

Chromatin remodelers use a helicase-type ATPase motor to shift DNA around the histone core. Although not directly reading out the DNA sequence, some chromatin remodelers exhibit a sequence-dependent bias in nucleosome positioning, which presumably reflects properties of the DNA duplex. Here, we show how nucleosome positioning by the Chd1 remodeler is influenced by local DNA perturbations throughout the nucleosome footprint.

View Article and Find Full Text PDF

The organization of Eukaryotic DNA into chromatin has profound implications for the processing of genetic information. In the past years, molecular dynamics (MD) simulations proved to be a powerful tool to investigate the mechanistic basis of chromatin biology. We review recent all-atom and coarse-grained MD studies revealing how the structure and dynamics of chromatin underlie its biological functions.

View Article and Find Full Text PDF

Translocases such as DNA/RNA polymerases, replicative helicases, and exonucleases are involved in eukaryotic DNA transcription, replication, and repair. Since eukaryotic genomic DNA wraps around histone octamers and forms nucleosomes, translocases inevitably encounter nucleosomes. A previous study has shown that a nucleosome repositions downstream when a translocase collides with the nucleosome.

View Article and Find Full Text PDF

The organization of nucleosomes along the Eukaryotic genome is maintained over time despite disruptive events such as replication. During this complex process, histones and DNA can form a variety of non-canonical nucleosome conformations, but their precise molecular details and roles during nucleosome assembly remain unclear. In this study, employing coarse-grained molecular dynamics simulations and Markov state modeling, we characterized the complete kinetics of nucleosome assembly.

View Article and Find Full Text PDF

Nucleosomes are stable yet highly dynamic complexes exhibiting diverse types of motions, such as sliding, DNA unwrapping, and disassembly, encoding a landscape with a large number of metastable states. In this review, describing recent studies on these nucleosome structure changes, we propose that the nucleosome can be viewed as an ideal allosteric scaffold: regulated by effector molecules such as transcription factors and chromatin remodelers, the nucleosome controls the downstream gene activity. Binding of transcription factors to the nucleosome can enhance DNA unwrapping or slide the DNA, altering either the binding or the unbinding of other transcription factors to nearby sites.

View Article and Find Full Text PDF

Langmuir-Blodgett (LB) technique, which involves the formation of interfacial layers and the subsequent transfer onto a solid substrate, provides one of the most versatile means to characterize the adsorption, self-assembly, and rheological properties of interfacial colloids. In this review, we summarized the relevant studies on anisotropic colloids, which exhibit a richer self-assembly potential than their spherical counterparts. Hard particles with different shape and aspect ratio induce interfacial distortions when trapped at a liquid interface; the ensuing capillary interactions can drive the formation of complex two-dimensional (2D) structures with interesting properties.

View Article and Find Full Text PDF

ATP-dependent chromatin remodelers are molecular machines that control genome organization by repositioning, ejecting, or editing nucleosomes, activities that confer them essential regulatory roles on gene expression and DNA replication. Here, we investigate the molecular mechanism of active nucleosome sliding by means of molecular dynamics simulations of the Snf2 remodeler translocase in complex with a nucleosome. During its inchworm motion driven by ATP consumption, the translocase overwrites the original nucleosome energy landscape via steric and electrostatic interactions to induce sliding of nucleosomal DNA unidirectionally.

View Article and Find Full Text PDF

While nucleosomes are highly stable structures as fundamental units of chromatin, they also slide along the DNA, either spontaneously or by active remodelers. Here, we investigate the microscopic mechanisms of nucleosome sliding by multiscale molecular simulations, characterizing how the screw-like motion of DNA proceeds via the formation and propagation of twist defects. Firstly, coarse-grained molecular simulations reveal that the sliding dynamics is highly dependent on DNA sequence.

View Article and Find Full Text PDF

While nucleosome positioning on eukaryotic genome play important roles for genetic regulation, molecular mechanisms of nucleosome positioning and sliding along DNA are not well understood. Here we investigated thermally-activated spontaneous nucleosome sliding mechanisms developing and applying a coarse-grained molecular simulation method that incorporates both long-range electrostatic and short-range hydrogen-bond interactions between histone octamer and DNA. The simulations revealed two distinct sliding modes depending on the nucleosomal DNA sequence.

View Article and Find Full Text PDF

To stabilize foams, droplets and films at liquid interfaces a range of protein biosurfactants have evolved in nature. Compared to synthetic surfactants, these combine surface activity with biocompatibility and low solution aggregation. One recently studied example is Rsn-2, a component of the foam nest of the frog Engystomops pustulosus, which has been predicted to undergo a clamshell-like opening transition at the air-water interface.

View Article and Find Full Text PDF

Ranaspumin-2 (Rsn-2) is a surfactant protein found in the foam nests of the túngara frog. Previous experimental work has led to a proposed model of adsorption that involves an unusual clam-shell-like unhinging of the protein at an interface. Interestingly, there is no concomitant denaturation of the secondary structural elements of Rsn-2 with the large-scale transformation of its tertiary structure.

View Article and Find Full Text PDF

BslA is an amphiphilic protein that forms a highly hydrophobic coat around Bacillus subtilis biofilms, shielding the bacterial community from external aqueous solution. It has a unique structure featuring a distinct partition between hydrophilic and hydrophobic surfaces. This surface property is reminiscent of synthesized Janus colloids.

View Article and Find Full Text PDF

In this paper, we present a method to quantify the extent of disorder in a system by using conditional entropies. Our approach is especially useful when other global, or mean field, measures of disorder fail. The method is equally suited for both continuum and lattice models, and it can be made rigorous for the latter.

View Article and Find Full Text PDF