Publications by authors named "Giovanni Abatangelo"

β-caryophyllene (BCP), a plant-derived sesquiterpene, has been reported to have anti-inflammatory and antioxidant effects. The purpose of this study is to evaluate the effects of BCP in combination with ascorbic acid (AA) and d-glucosamine (GlcN) against macrophage-mediated inflammation on in vitro primary human chondrocytes. Changes in cell viability, intracellular ROS generation, gene expression of pro-inflammatory mediators, metalloproteinases (MMPs), collagen type II and aggrecan were analyzed in primary human chondrocytes exposed to the conditioned medium (CM) of activated U937 monocytes and subsequently treated with BCP alone or in combination with AA and GlcN.

View Article and Find Full Text PDF

Among conventional osteoarthritis (OA) treatments, intra-articular (i.a) viscosupplementation with hyaluronic acid (HA) is used to restore joint viscoelasticity. However, the rapid clearance and elimination of HA may limit its application.

View Article and Find Full Text PDF

Purpose The purpose of this study is to examine the activity of collagenase from cultures of Vibrio alginolyticus as in vitro as in biological samples and to evaluate clinical perspectives of this product about the treatment of fibroproliferative diseases like Dupuytren's contracture. Methods The experimental part of the study has been divided in 2 stages. In the first stage, the collagenase has been produced in laboratory, assessing its purity, verifying the in vitro degradation of collagen by the enzyme and measuring the size of the fragments; in the second part, an experimental injection into samples of fibrous cord typical of Dupuytren's disease has been performed in vitro.

View Article and Find Full Text PDF

Introduction: A greater supply of tendinous tissue can be obtained through tissue engineering technology with increasing application of adult stem cells. It is well known that adipose-derived stem cells (ADSCs), found in abundance in adipose tissue, have the same differentiating capacity as mesenchymal stem cells yet have the advantage of being easily isolated. In the present study, we combined the great facility of ADSCs to differentiate with the application of an external mechanical stimulus to successfully create an in vitro reconstructed tendonlike structure with a microcapillary network.

View Article and Find Full Text PDF

Introduction: Nociceptive pain is one of the most common types of pain that originates from an injury involving nociceptors. Approximately 60% of the knee joint innervations are classified as nociceptive. The specific biological mechanism underlying the regulation of nociceptors is relevant for the treatment of symptoms affecting the knee joint.

View Article and Find Full Text PDF

In this study, the stability and biocompatibility of methacrylated gellan gum hydrogels, obtained either by ionic- (iGG-MA) or photo-crosslinking (phGG-MA), were evaluated in vitro and in vivo. Size exclusion chromatography analysis of the methacrylated gellan gum (GG-MA) powder revealed that molecular weight is lower as compared to the non-modified material, i.e.

View Article and Find Full Text PDF

The aim of this study was to compare the effects of native hyaluronan (HA) with that of its hexadecylamide derivative (HYADD) on proliferation of fibroblast-like synoviocytes (FLS) and chondrocytes. The production of inflammatory and anti-inflammatory cytokines was also analyzed in FLS cultures. The proliferation of osteoarthritis (OA) chondrocytes was enhanced when cells were treated with 0.

View Article and Find Full Text PDF

An observational study was carried out at the Plastic and Reconstructive Surgery Unit of the University of Pavia - Salvatore Maugeri Research and Care Institute, Pavia, Italy, to assess the clinical and histological long-term outcomes of autologous skin grafting of fresh surgical wounds following previous repair with a hyaluronic acid three-dimensional scaffold (Hyalomatrix®). Eleven fresh wounds from surgical release of retracted scars were enrolled in this study. A stable skin-like tissue cover was observed in all of the treated wounds in an average 1 month's time; at the end of this study, after an average of 12 months' time, all of the reconstructed areas were pliable and stable, although an average retraction rate of 51·62% was showed.

View Article and Find Full Text PDF

Alström Syndrome (ALMS) is a rare genetic disorder (483 living cases), characterized by many clinical manifestations, including blindness, obesity, type 2 diabetes and cardiomyopathy. ALMS is caused by mutations in the ALMS1 gene, encoding for a large protein with implicated roles in ciliary function, cellular quiescence and intracellular transport. Patients with ALMS have extensive fibrosis in nearly all tissues resulting in a progressive organ failure which is often the ultimate cause of death.

View Article and Find Full Text PDF

 Coverage of large skin defects, especially following tumor resection and in patients who are not good candidates for procedures requiring general anesthesia, may require a staged procedure. The use of dermal substitutes to cover the defect until autologous grafting can be performed has been described. Hyaluronic acid biological dressings (HABD) also have been used for the temporary coverage of partial- to full-thickness posttraumatic or postsurgical wounds.

View Article and Find Full Text PDF

The objective of this preliminary study was to develop a reabsorbable vascular patch that did not require in vitro cell or biochemical preconditioning for vascular wall repair. Patches were composed only of hyaluronic acid (HA). Twenty male Wistar rats weighing 250-350 g were used.

View Article and Find Full Text PDF

In the last few years, adipose tissue, which has been largely ignored by anatomists and physicians for centuries, has found new brightness thanks to the stem cells contained within. These adipose derived stem cells (ADSC) have the same characteristics of the mesenchymal stem cells (MSC) residing in bone marrow. They have the same cell surface markers and are capable of differentiating into the same cell types, including osteoblasts, chondrocytes, myoblasts, adipocytes, and neuron-like cells.

View Article and Find Full Text PDF

'Small is beautiful' - this should be the slogan of nanoscientists. Indeed, working with particles less than 100 nm in size, nanotechnology is on the verge of providing a host of new materials and approaches, revolutionizing applied medicine. The obvious potential of nanotechnology has attracted considerable investment from governments and industry hoping to drive its economic development.

View Article and Find Full Text PDF

The ideal bioartificial liver should be designed to reproduce as nearly as possible in vitro the habitat that hepatic cells find in vivo. In the present work, we investigated the in vitro perfusion condition with a view to improving the hepatic differentiation of pluripotent human liver stem cells (HLSCs) from adult liver. Tissue engineering strategies based on the cocultivation of HLSCs with hepatic stellate cells (ITO) and with several combinations of medium were applied to improve viability and differentiation.

View Article and Find Full Text PDF

Objective: A significant amount of recent interest has been focused on the possibility that adult human stem cells are a realistic therapeutic alternative to embryonic stem cells. Multipotent stem cells that have characteristics reminiscent of embryonic neural crest stem cells have been isolated from several postnatal tissues, including skin, gut, dental pulp and the heart, and are potentially useful for research and therapeutic purposes. However, their neurogenic potential, including their ability to produce electrophysiologically active neurons, is largely unexplored.

View Article and Find Full Text PDF

The aim of this study was to develop a prosthetic graft that could perform as a small-diameter vascular conduit for vein regeneration. The difficulty of obtaining significant long-term patency and good wall mechanical strength in vivo has been a significant obstacle in achieving small-diameter vein prostheses. Fifteen Male Wistar rats weighing 250-350 g were used.

View Article and Find Full Text PDF

Tissue engineering is a multidisciplinary field focused on in vitro reconstruction of mammalian tissues. In order to allow a similar three-dimensional organization of in vitro cultured cells, biocompatible scaffolds are needed. This need has provided immense momentum for research on "smart scaffolds" for use in cell culture.

View Article and Find Full Text PDF

OBJECTIVE: In recent years, research on stem cells has been focused on the development of personalized cell-based therapies. Owing to their homing properties, adult human stem cells are a promising source of autologous cells to be used as therapeutic vehicles. Multiple potential sources for clinically useful stem and progenitor cells have been identified, including autologous and allogenic embryonic, fetal and adult somatic cells from neural, adipose and mesenchymal tissue.

View Article and Find Full Text PDF

Introduction: The present study established characteristics of tissue regrowth in patients suffering knee lesions treated with grafts of autologous chondrocytes grown on three-dimensional hyaluronic acid biomaterials.

Methods: This multicentred study involved a second-look arthroscopy/biopsy, 5 to 33 months post implant (n = 63). Seven patients allowed a third-look biopsy, three of which were performed 18 months post implant.

View Article and Find Full Text PDF

Objective: For peripheral nerve regeneration, three-dimensional distribution and growth of cells within the porous scaffold are of clinical significance. The purpose of this study was to test in vitro a novel hyaluronic acid-based tubular conduit (HYAFF-11 biomaterials: 1 x 10 mm) as a nerve guide.

Methods: Human fibroblasts, RN22 Schwann cell lines, human umbilical vein endothelial cells and primary nerve cells, obtained from neonatal rat sciatic nerve, were harvested and seeded on HYAFF-11 devices.

View Article and Find Full Text PDF

Vascular tissue engineering has emerged as a promising technology for the design of an ideal, responsive, living conduit with properties similar to that of native tissue. The missing link in tissue-engineered blood vessels is elastin biosynthesis. Several biomaterials are currently used but few support elastin biosynthesis in a 3-D array.

View Article and Find Full Text PDF

Regeneration of mesenchymal tissues depends on a resident stem cell population, that in most cases remains elusive in terms of cellular identity and differentiation signals. We here show that primary cell cultures derived from adipose tissue or skeletal muscle differentiate into adipocytes when cultured in high glucose. High glucose induces ROS production and PKCbeta activation.

View Article and Find Full Text PDF

Tissue engineering is a multidisciplinary field that involves the application of the principles and methods of engineering and life sciences towards i) the fundamental understanding of structure-function relationships in normal and pathological mammalian tissues and ii) the development of biological substitutes that restore, maintain or improve tissue function. The goal of tissue engineering is to surpass the limitations of conventional treatments based on organ transplantation and biomaterial implantation. The field of tendon tissue engineering is relatively unexplored due to the difficulty in in vitro preservation of tenocyte phenotype.

View Article and Find Full Text PDF

Few manuscripts describe the construction of an adipose tissue composite flap able to create an in vivo microenvironment and a neovasculature that can grow with and service implanted adipose tissue. Creation of an in vivo vascular carrier and tissue chamber for volume-stable transplanted adipose tissue was attempted using jejunum segments with intact circulation in 18 male Wistar rats. Intestinal segments were filled with autologous adipose tissue.

View Article and Find Full Text PDF