Parkinson's disease (PD) represents the most common neurodegenerative movement disorder. We recently identified 16 novel genes associated with PD. In this study, we focused the attention on the common and rare variants identified in the lysosomal K channel TMEM175.
View Article and Find Full Text PDFBackground: Parkinson's disease (PD) is a neurodegenerative movement disorder affecting 1-5% of the general population for which neither effective cure nor early diagnostic tools are available that could tackle the pathology in the early phase. Here we report a multi-stage procedure to identify candidate genes likely involved in the etiopathogenesis of PD.
Methods: The study includes a discovery stage based on the analysis of whole exome data from 26 dominant late onset PD families, a validation analysis performed on 1542 independent PD patients and 706 controls from different cohorts and the assessment of polygenic variants load in the Italian cohort (394 unrelated patients and 203 controls).
In mammals, the pre-gastrula proximal epiblast gives rise to primordial germ cells (PGCs) or somatic precursors in response to BMP4 and WNT signaling. Entry into the germline requires activation of a naïve-like pluripotency gene regulatory network (GRN). Recent work has shown that suppression of OTX2 expression in the epiblast by BMP4 allows cells to develop a PGC fate in a precise temporal window.
View Article and Find Full Text PDFEmbryonic stem cells (ESCs) cultured in leukemia inhibitory factor (LIF) plus fetal bovine serum (FBS) exhibit heterogeneity in the expression of naive and primed transcription factors. This heterogeneity reflects the dynamic condition of ESCs and their versatility to promptly respond to signaling effectors promoting naive or primed pluripotency. Here, we report that ESCs lacking Nanog or overexpressing Otx2 exhibit an early primed identity in LIF + FBS and fail to convert into 2i-induced naive state.
View Article and Find Full Text PDFThe mechanistic target of rapamycin complex 1 (mTORC1) is recruited to the lysosome by Rag guanosine triphosphatases (GTPases) and regulates anabolic pathways in response to nutrients. We found that MiT/TFE transcription factors-master regulators of lysosomal and melanosomal biogenesis and autophagy-control mTORC1 lysosomal recruitment and activity by directly regulating the expression of RagD. In mice, this mechanism mediated adaptation to food availability after starvation and physical exercise and played an important role in cancer growth.
View Article and Find Full Text PDFMouse embryonic stem cells (ESCs) and the inner cell mass (ICM)-derived epiblast exhibit naive pluripotency. ESC-derived epiblast stem cells (EpiSCs) and the postimplantation epiblast exhibit primed pluripotency. Although core pluripotency factors are well-characterized, additional regulators, including Otx2, recently have been shown to function during the transition from naive to primed pluripotency.
View Article and Find Full Text PDFThe homeobox-containing transcription factor Otx2 controls the identity, fate and proliferation of mesencephalic dopaminergic (mesDA) neurons. Transgenic mice, in which Otx2 was conditionally overexpressed by a Cre recombinase expressed under the transcriptional control of the Engrailed1 gene (En1(Cre/+); tOtx2(ov/+)), show an increased number of mesDA neurons during development. In adult mice, Otx2 is expressed in a subset of neurons in the ventral tegmental area (VTA) and its overexpression renders mesDA more resistant to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-HCl (MPTP) neurotoxin.
View Article and Find Full Text PDFDuring embryonic development, the rostral neuroectoderm is regionalized into broad areas that are subsequently subdivided into progenitor compartments with specialized identity and fate. These events are controlled by signals emitted by organizing centers and interpreted by target progenitors, which activate superimposing waves of intrinsic factors restricting their identity and fate. The transcription factor Otx2 plays a crucial role in mesencephalic development by positioning the midbrain-hindbrain boundary (MHB) and its organizing activity.
View Article and Find Full Text PDFMouse embryonic stem cells (ESCs) represent the naïve ground state of the preimplantation epiblast and epiblast stem cells (EpiSCs) represent the primed state of the postimplantation epiblast. Studies have revealed that the ESC state is maintained by a dynamic mechanism characterized by cell-to-cell spontaneous and reversible differences in sensitivity to self-renewal and susceptibility to differentiation. This metastable condition ensures indefinite self-renewal and, at the same time, predisposes ESCs for differentiation to EpiSCs.
View Article and Find Full Text PDFUnderstanding the molecular basis underlying the neurogenesis of mesencephalic-diencephalic Dopaminergic (mdDA) neurons is a major task fueled by their relevance in controlling locomotor activity and emotion and their involvement in neurodegenerative and psychiatric diseases. Increasing evidence suggests that mdDA neurons of the substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA) represent two main distinct neuronal populations, which, in turn, include specific neuronal subsets. Relevant studies provided important results on mdDA neurogenesis, but, nevertheless, have not yet clarified how the identity of mdDA neuronal subtypes is established and, in particular, whether neurogenic factors may direct progenitors towards the differentiation of specific mdDA neuronal subclasses.
View Article and Find Full Text PDFDedifferentiation confers more aggressive malignant behaviour than would be otherwise shown by the original tumor if present alone. This phenomenon has been described in several tumors, both mesenchymal and epithelial. Dedifferentiated endometrioid carcinoma either ovarian or endometrial is the latest addition to this family of tumors.
View Article and Find Full Text PDFMesencephalic-diencephalic dopaminergic (mdDA) neurons play a relevant role in the control of movement, behavior, and cognition. Indeed loss and/or abnormal functioning of mdDA neurons are responsible for Parkinson's disease as well as for addictive and psychiatric disorders. In the last years a wealth of information has been provided on gene functions controlling identity, fate, and proliferation of mdDA progenitors.
View Article and Find Full Text PDFBackground: CD20 antigen down-modulation by anti-CD20 rituximab treatment is a well-recognized phenomenon in patients with non-Hodgkin's lymphoma. However, few data are currently available on this topic in other lymphoproliferative disorders, in particular in chronic lymphocytic leukemia (CLL).
Objective: The aim of this study was to establish how many patients with CLL show a disappearance of CD20 antigen after salvage treatment with rituximab and its possible clinical significance.
Mesencephalic and diencephalic dopaminergic (mdDA) progenitors generate two major groups of neurons corresponding to the A9 neurons of the substantia nigra pars compacta (SNpc) and the A10 neurons of the ventral tegmental area (VTA). MdDA neurons control motor, sensorimotor and motivated behaviour and their degeneration or abnormal functioning is associated to Parkinson's disease and psychiatric disorders. Although relevant advances have been made, the molecular basis controlling identity, survival and vulnerability to neurodegeneration of SNpc and VTA neurons remains poorly understood.
View Article and Find Full Text PDFMesencephalic-diencephalic dopaminergic neurons control locomotor activity and emotion and are affected in neurodegenerative and psychiatric diseases. The homeoprotein Otx2 is restricted to ventral tegmental area (VTA) neurons that are prevalently complementary to those expressing Girk2 and glycosylated active form of the dopamine transporter (Dat). High levels of glycosylated Dat mark neurons with efficient dopamine uptake and pronounced vulnerability to Parkinsonian degeneration.
View Article and Find Full Text PDFNeurons usually migrate and differentiate in one particular encephalic vesicle. We identified a murine population of diencephalic neurons that colonized the telencephalic amygdaloid complex, migrating along a tangential route that crosses a boundary between developing brain vesicles. The diencephalic transcription factor OTP was necessary for this migratory behavior.
View Article and Find Full Text PDFMesencephalic-diencephalic dopaminergic (mdDA) neurons control motor, sensorimotor and motivated behaviour and their degeneration or abnormal functioning is associated with important pathologies, such as Parkinsons disease and psychiatric disorders. Despite great efforts, the molecular basis and the genetic factors differentially controlling identity, survival and vulnerability to neurodegeneration of mdDA neurons of the substantia nigra (SN) and ventral tegmental area (VTA) are poorly understood. We have previously shown that the transcription factor Otx2 is required for identity, fate and proliferation of mesencephalic DA (mesDA) progenitors.
View Article and Find Full Text PDFGenetic and embryological experiments demonstrated that the visceral endoderm (VE) is essential for positioning the primitive streak at one pole of the embryo and head morphogenesis through antagonism of the Wnt and Nodal signaling pathways. The transcription factor Otx2 is required for VE anteriorization and specification of rostral neuroectoderm at least in part by controlling the expression of Dkk1 and Lefty1. Here, we investigated the relevance of the Otx2 transcriptional control in these processes.
View Article and Find Full Text PDFMeso-diencephalic dopaminergic (mdDA) neurons control voluntary movement, cognition and the reward response, and their degeneration is associated with Parkinson's disease (PD). Prospective cell transplantation therapies for PD require full knowledge of the developmental pathways that control mdDA neurogenesis. We have previously shown that Otx2 is required for the establishment of the mesencephalic field and molecular code of the entire ventral mesencephalon (VM).
View Article and Find Full Text PDFThe homeobox-containing transcription factor Otx2 is crucially involved in fate determination of midbrain neurons. Mutant mice, in which Otx2 was conditionally inactivated by a Cre recombinase expressed under the transcriptional control of the Engrailed1 (En1) gene (En1(cre/+); Otx2(flox/flox)), show a reduced number of dopaminergic neurons and an increased number of serotonergic neurons in the ventral midbrain. Despite these developmental anatomical alterations, En1(cre/+); Otx2(flox/flox) adult mice display normal motor function.
View Article and Find Full Text PDFWe report, for the first time, the N-terminal amino acid sequences of both intact and cleaved forms (fragments A and B) of Mung bean nuclease, purified from sprouts of Vigna radiata or purchased from Amersham Biosciences. The N-terminal sequence of Mung bean nuclease shows high similarity with the putative bifunctional nuclease from Arabidopsis thaliana (AC: AAM63596).
View Article and Find Full Text PDFMalignant tumors of peripheral nerves (MPNST) represent approximately 5-10% of all soft tissue sarcomas and usually are in relationship with a major nerve. Primary cervical malignant Schwannomas are very rare neural sheat tumors that, grossly and clinically, are misdiagnosed for other more frequent lesions of the uterine cervix. We report a case of primary cervical malignant Schwannoma in a 27 years old female with atypical bleeding.
View Article and Find Full Text PDFPacinian neuroma is an extremely rare benign tumor which has only occasionally been reported in the literature. To date, this lesion has usually been observed in the hand and foot; only one had intra-abdominal localization. Local trauma is reported in the most of these cases.
View Article and Find Full Text PDFGastrointestinal angiodysplasia is an acquired and degenerative lesion characterized by proliferation and ectasias of the vessels of the mucosa and submucosa. It's thought to be one of the most common causes of lower gastrointestinal bleeding in the elderly. We describe two cases of angiodysplasia and review the related literature.
View Article and Find Full Text PDF