Aims: Selisistat, a selective SirT1 inhibitor is being developed as a potentially disease-modifying therapeutic for Huntington's disease (HD). This was the first study of selisistat in HD patients and was primarily aimed at development of pharmacodynamic biomarkers.
Methods: This was a randomized, double-blind, placebo-controlled, multicentre exploratory study.
Background: Huntington's disease is a neurodegenerative disorder characterized by transcriptional alterations both in central and peripheral tissues. Therefore, the identification of a transcriptional signature in an accessible tissue can meaningfully complement current efforts in clinical biomarker development. Gene expression normalization represents an essential step in transcriptional signatures identification, and since many reference genes show altered expressions in several pathologies, the definition of stable genes in the desired tissue is required to allow correct result interpretations.
View Article and Find Full Text PDFOxidation of [Ti(CO)(6)](2-) by thiuram disulfides, (R(2)NCS(2))(2), affords the first isolable mononuclear six-coordinate titanium(0) carbonyls, [Ti(CO)(4)(S(2)CNR(2))](-), which have unusual trigonal prismatic geometries and chemical and spectral properties that are remarkably similar to those of the 18-electron and seven-coordinate anion [Ti(CO)(4)(eta(5)-C(5)H(5))](-).
View Article and Find Full Text PDF