Herein we describe the discovery of a novel series of pyrrolo[1,2-a]pyrazin-1(2H)-one PARP inhibitors. Optimization led to compounds that display excellent PARP-1 enzyme potency and inhibit the proliferation of BRCA deficient cells in the low double-digit nanomolar range showing excellent selectivity over BRCA proficient cancer cells.
View Article and Find Full Text PDFIn the context of HIV-integrase, dihydroxypyrimidine and N-methyl pyrimidone inhibitors the cellular activity of this class of compounds has been optimized by the introduction of a simple methyl substituent in the alpha-position of the C-2 side chains. Enhanced passive membrane permeability has been identified as the key factor driving the observed cell-based activity improvement. The rat PK profile of the alpha-methyl derivative 26a was also improved over its des-methyl exact analog.
View Article and Find Full Text PDFThe optimization of a potent, class I selective ketone HDAC inhibitor is shown. It possesses optimized pharmacokinetic properties in preclinical species, has a clean off-target profile, and is negative in a microbial mutagenicity (Ames) test. In a mouse xenograft model it shows efficacy comparable to that of vorinostat at a 10-fold reduced dose.
View Article and Find Full Text PDFHistone deacetylase (HDAC) inhibitors offer a promising strategy for cancer therapy and the first generation HDAC inhibitors are currently in the clinic. Herein we describe the optimization of a series of ketone small molecule HDAC inhibitors leading to potent and selective class I HDAC inhibitors with good dog PK.
View Article and Find Full Text PDFHuman immunodeficiency virus type-1 (HIV-1) integrase is one of the three virally encoded enzymes required for replication and therefore a rational target for chemotherapeutic intervention in the treatment of HIV-1 infection. We report here the discovery of Raltegravir, the first HIV-integrase inhibitor approved by FDA for the treatment of HIV infection. It derives from the evolution of 5,6-dihydroxypyrimidine-4-carboxamides and N-methyl-4-hydroxypyrimidinone-carboxamides, which exhibited potent inhibition of the HIV-integrase catalyzed strand transfer process.
View Article and Find Full Text PDFHistone deacetylase (HDAC) inhibitors offer a promising strategy for cancer therapy, and the first generation HDAC inhibitors are currently in the clinic. Entirely novel ketone HDAC inhibitors have been developed from the cyclic tetrapeptide apicidin. These compounds show class I subtype selectivity and levels of cellular activity comparable to clinical candidates.
View Article and Find Full Text PDFHIV integrase is one of the three enzymes encoded by HIV genome and is essential for viral replication, but integrase inhibitors as marketed drugs have just very recently started to emerge. In this study, we show the evolution from the N-methylpyrimidinone structure to bicyclic pyrimidinones. Introduction of a suitably substituted amino moiety modulated the physical-chemical properties of the molecules and conferred nanomolar activity in the inhibition of spread of HIV-1 infection in cell culture.
View Article and Find Full Text PDFThe human immunodeficiency virus type-1 (HIV-1) encodes three enzymes essential for viral replication: a reverse transcriptase, a protease, and an integrase. The latter is responsible for the integration of the viral genome into the human genome and, therefore, represents an attractive target for chemotherapeutic intervention against AIDS. A drug based on this mechanism has not yet been approved.
View Article and Find Full Text PDFA series of aryltetrazolylacetanilides was synthesized and evaluated as HIV-1 non-nucleoside reverse transcriptase inhibitors on wild-type virus and on the clinically relevant K103N mutant strain. Extensive SAR investigation led to potent compounds, with nanomolar activity on K103N, and orally bioavailable in rats.
View Article and Find Full Text PDF