Publications by authors named "Giovanna Menduti"

In the field of neurodegenerative pathologies, the platforms for disease modelling based on patient-derived induced pluripotent stem cells (iPSCs) represent a valuable molecular diagnostic/prognostic tool. Indeed, they paved the way for the in vitro recapitulation of the pathological mechanisms underlying neurodegeneration and for characterizing the molecular heterogeneity of disease manifestations, also enabling drug screening approaches for new therapeutic candidates. A major challenge is related to the choice and optimization of the morpho-functional study designs in human iPSC-derived neurons to deeply detail the cell phenotypes as markers of neurodegeneration.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a genetic disease resulting in the loss of α-motoneurons followed by muscle atrophy. It is caused by knock-out mutations in the survival of motor neuron 1 (SMN1) gene, which has an unaffected, but due to preferential exon 7 skipping, only partially functional human-specific SMN2 copy. We previously described a Drosophila-based screening of FDA-approved drugs that led us to discover moxifloxacin.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is the most common genetic disease affecting infants and young adults. Due to mutation/deletion of the survival motor neuron () gene, SMA is characterized by the SMN protein lack, resulting in motor neuron impairment, skeletal muscle atrophy and premature death. Even if the genetic causes of SMA are well known, many aspects of its pathogenesis remain unclear and only three drugs have been recently approved by the Food and Drug Administration (Nusinersen-Spinraza; Onasemnogene abeparvovec or AVXS-101-Zolgensma; Risdiplam-Evrysdi): although assuring remarkable results, the therapies show some important limits including high costs, still unknown long-term effects, side effects and disregarding of -independent targets.

View Article and Find Full Text PDF

Background: The compilation of a list of genetic modifiers in Alzheimer's disease (AD) is an open research field. The GABAergic system is affected in several neurological disorders but its role in AD is largely understudied.

Objective/methods: As an explorative study, we considered variants in genes of GABA catabolism (ABAT, ALDH5A1, AKR7A2), and APOE in 300 Italian patients and 299 controls.

View Article and Find Full Text PDF

Succinate semialdehyde dehydrogenase (SSADH) is a mitochondrial enzyme, encoded by , mainly involved in γ-aminobutyric acid (GABA) catabolism and energy supply of neuronal cells, possibly contributing to antioxidant defense. This study aimed to further investigate the antioxidant role of SSADH, and to verify if common SNPs of may affect SSADH activity, stability, and mitochondrial function. In this study, we used U87 glioblastoma cells as they represent a glial cell line.

View Article and Find Full Text PDF

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare autosomal recessive metabolic disorder of GABA catabolism. SSADH is a mitochondrial homotetrameric enzyme encoded by ALDH5A1 gene. We report the molecular characterization of ALDH5A1 gene in an Italian SSADHD patient, showing heterozygosity for four missense mutations: c.

View Article and Find Full Text PDF

SSADH deficiency (SSADHD) is a rare autosomal recessively inherited metabolic disorder. It is associated with mutations of ALDH5A1 gene, coding for the homotetrameric enzyme SSADH. This enzyme is involved in γ-aminobutyric acid (GABA) catabolism, since it oxidizes succinic semialdehyde (SSA) to succinate.

View Article and Find Full Text PDF