The Camelidae species occupy an important immunological niche within the humoral as well as cell mediated immune response. Although recent studies have highlighted that the somatic hypermutation (SHM) shapes the T cell receptor gamma (TRG) and delta (TRD) repertoire in , it is still unclear how γδ T cells use the TRG/TRD receptors and their respective variable V-GAMMA and V-DELTA domains to recognize antigen in an antibody-like fashion. Here we report about 3D structural analyses of the human and dromedary γδ T cell receptor.
View Article and Find Full Text PDFThe domestic pig () is a species representative of the Suina, one of the four suborders within Cetartiodactyla. In this paper, we reported our analysis of the pig TRG locus in comparison with the loci of species representative of the Ruminantia, Tylopoda, and Cetacea suborders. The pig TRG genomic structure reiterates the peculiarity of the organization of Cetartiodactyla loci in TRGC "cassettes", each containing the basic V-J-J-C unit.
View Article and Find Full Text PDFThe bottlenose dolphin () belongs to the Cetartiodactyla and, similarly to other cetaceans, represents the most successful mammalian colonization of the aquatic environment. Here we report a genomic, evolutionary, and expression study of T cell receptor beta (TRB) genes. Although the organization of the dolphin TRB locus is similar to that of the other artiodactyl species, with three in tandem D-J-C clusters located at its 3' end, its uniqueness is given by the reduction of the total length due essentially to the absence of duplications and to the deletions that have drastically reduced the number of the germline TRBV genes.
View Article and Find Full Text PDFThe role of γδ T cells in vertebrate immunity is still an unsolved puzzle. Species such as humans and mice display a low percentage of these T lymphocytes (i.e.
View Article and Find Full Text PDFBackground: Goats (Capra hircus), one of the first domesticated species, are economically important for milk and meat production, and their broad geographical distribution reflects their successful adaptation to diverse environmental conditions. Despite the relevance of this species, the genetic research on the goat traits is limited compared to other domestic species. Thanks to the latest goat reference genomic sequence (ARS1), which is considered to be one of the most continuous assemblies in livestock, we deduced the genomic structure of the T cell receptor beta (TRB) and gamma (TRG) loci in this ruminant species.
View Article and Find Full Text PDFT lymphocytes are the principal actors of vertebrates' cell-mediated immunity. Like B cells, they can recognize an unlimited number of foreign molecules through their antigen-specific heterodimer receptors (TRs), which consist of αβ or γδ chains. The diversity of the TRs is mainly due to the unique organization of the genes encoding the α, β, γ, and δ chains.
View Article and Find Full Text PDFThe adaptive immune receptors repertoire is highly plastic, with its ability to produce antigen-binding molecules and select those with high affinity for their antigen. Species have developed diverse genetic and structural strategies to create their respective repertoires required for their survival in the different environments. Camelids, until now, considered as a case of evolutionary innovation because of their only heavy-chain antibodies, represent a new mammalian model particularly useful for understanding the role of diversity in the immune system function.
View Article and Find Full Text PDFT cells can be separated into two major subsets based on the heterodimer that forms their T cell receptors. αβ T cells have receptors consisting of α and β chains, while γδ T cells are composed of γ and δ chains. αβ T cells play an essential role within the adaptive immune responses against pathogens.
View Article and Find Full Text PDFHeterogeneity in geomorphological and hydrographical conditions throughout the Mediterranean Sea could be the driving factors behind the significant differences between putative sub-populations, although the existence of a large panmictic population of striped dolphin Stenella coeruleoalba (Meyen 1833) in this marine region could not be excluded. However, understanding the ecological implications of such genetic differentiation is difficult, as inferences about gene flow are usually made on evolutionary time scales and not along the ecological time frame over which most management and conservation practices are applied. In fact, as stated by the IUCN Red List, in the case of species assessed as vulnerable, the degree of genetic exchange between populations within a biogeographic region and its ecological implications represent a fascinating challenge that should be very deeply explored.
View Article and Find Full Text PDFBackground: The bottlenose dolphin (Tursiops truncatus) is a mammal that belongs to the Cetartiodactyla and have lived in marine ecosystems for nearly 60 millions years. Despite its popularity, our knowledge about its adaptive immunity and evolution is very limited. Furthermore, nothing is known about the genomics and evolution of dolphin antigen receptor immunity.
View Article and Find Full Text PDFIn previous reports, we had shown in Camelus dromedarius that diversity in T cell receptor gamma (TRG) and delta (TRD) variable domains can be generated by somatic hypermutation (SHM). In the present paper, we further the previous finding by analyzing 85 unique spleen cDNA sequences encoding a total of 331 mutations from a single animal, and comparing the properties of the mutation profiles of dromedary TRG and TRD variable domains. The transition preference and the significant mutation frequency in the AID motifs (dgyw/wrch and wa/tw) demonstrate a strong dependence of the enzymes mediating SHM in TRG and TRD genes of dromedary similar to that of immunoglobulin genes in mammals.
View Article and Find Full Text PDFHere is an updated report on the genomic organization of T cell receptor beta (TRB) locus in the domestic dog (Canis lupus familiaris) as inferred from comparative genomics and expression analysis. The most interesting results we found were a second TRBD-J-C cluster, which is absent from the reference genome sequence, and the annotation of two additional TRBV genes. In dogs, TRB locus consists of a library of 37 TRBV genes positioned at the 5' end of two in tandem aligned D-J-C gene clusters, each composed of a single TRBD, 6 TRBJ and one TRBC genes, followed by a single TRBV gene with an inverted transcriptional orientation.
View Article and Find Full Text PDF