Due to their intercellular communication properties and involvement in a wide range of biological processes, extracellular vesicles (EVs) are increasingly being studied and exploited for different applications. Nevertheless, their complex nature and heterogeneity, as well as the challenges related to their purification and characterization procedures, require a cautious assessment of the qualitative and quantitative parameters that need to be monitored. This translates into a multitude of choices and putative solutions that any EV researcher must confront in both research and translational environments.
View Article and Find Full Text PDFCancer cell dormancy is a reversible process whereby cancer cells enter a quiescent state characterized by cell cycle arrest, inhibition of cell migration and invasion, and increased chemoresistance. Because of its reversibility and resistance to treatment, dormancy is a key process to study, monitor, and interfere with, in order to prevent tumor recurrence and metastasis and improve the prognosis of cancer patients. However, to achieve this goal, further studies are needed to elucidate the mechanisms underlying this complex and dynamic dual process.
View Article and Find Full Text PDFGlioblastoma (GB) is a rare but extremely aggressive brain tumor that significantly impacts patient outcomes, affecting both duration and quality of life. The protocol established by Stupp and colleagues in 2005, based on radiotherapy and chemotherapy with Temozolomide, following maximum safe surgical resection remains the gold standard for GB treatment; however, it is evident nowadays that the extreme intratumoral and intertumoral heterogeneity, as well as the invasiveness and tendency to recur, of GB are not compatible with a routine and unfortunately ineffective treatment. This review article summarizes the main challenges in the search for new valuable therapies for GB and focuses on the impact that extracellular vesicle (EV) research and exploitation may have in the field.
View Article and Find Full Text PDFThe infiltration of primary tumors and metastasis formation at distant sites strongly impact the prognosis and the quality of life of cancer patients. Current therapies including surgery, radiotherapy, and chemotherapy are limited in targeting the complex cell migration mechanisms responsible for cancer cell invasiveness and metastasis. A better understanding of these mechanisms and the development of new therapies are urgently needed.
View Article and Find Full Text PDFTumor growth and metastasis strongly rely on cell-cell communication. One of the mechanisms by which tumor cells communicate involves the release and uptake of lipid membrane encapsulated particles full of bioactive molecules, called extracellular vesicles (EVs). EV exchange between cancer cells may induce phenotype changes in the recipient cells.
View Article and Find Full Text PDFTransfection is the process by which nucleic acids are introduced into eukaryotic cells. This is fundamental in basic research for studying gene function and modulation of gene expression as well as for many bioprocesses in the manufacturing of clinical-grade recombinant biologics from cells. Transfection efficiency is a critical parameter to increase biologics' productivity; the right protocol has to be identified to ensure high transfection efficiency and therefore high product yield.
View Article and Find Full Text PDFCellular, inter-organismal and cross kingdom communication via extracellular vesicles (EVs) is intensively studied in basic science with high expectation for a large variety of bio-technological applications. EVs intrinsically possess many attributes of a drug delivery vehicle. Beyond the implications for basic cell biology, academic and industrial interests in EVs have increased in the last few years.
View Article and Find Full Text PDFProper regulation of neurogenesis, the process by which new neurons are generated from neural stem and progenitor cells (NS/PCs), is essential for embryonic brain development and adult brain function. The transcription regulator is ubiquitously expressed in early mouse embryos and has a key role in embryonic stem cell maintenance. At later stages, the detection of expression mainly in the developing brain suggests a specific involvement of in neurogenesis.
View Article and Find Full Text PDFSafe, efficient and specific nano-delivery systems are essential for current and emerging therapeutics, precision medicine and other biotechnology sectors. Novel bio-based nanotechnologies have recently arisen, which are based on the exploitation of extracellular vesicles (EVs). In this context, it has become essential to identify suitable organisms or cellular types to act as reliable sources of EVs and to develop their pilot- to large-scale production.
View Article and Find Full Text PDFNon-coding RNA transcripts originating from Ultraconserved Regions (UCRs) have tissue-specific expression and play relevant roles in the pathophysiology of multiple cancer types. Among them, we recently identified and characterized the ultra-conserved-transcript-8+ (uc.8+), whose levels correlate with grading and staging of bladder cancer.
View Article and Find Full Text PDFBackground: Many pseudogenes possess biological activities and play important roles in the pathogenesis of various types of cancer including bladder cancer (BlCa), which still lacks suitable molecular biomarkers. Recently, pseudogenes were found to be significantly enriched in a pan-cancer classification based on the Cancer Genome Atlas gene expression data. Among them, the top-ranking pseudogene was the proliferation-associated 2G4 pseudogene 4 ).
View Article and Find Full Text PDFImmunization against β-amyloid (Aβ) is pursued as a possible strategy for the prevention of Alzheimer's disease (AD). In clinical trials, Aβ 1-42 proved poorly immunogenic and caused severe adverse effects; therefore, safer and more immunogenic candidate vaccines are needed. Multimeric protein (1-11)E2 is able to induce an antibody response to Aβ, immunological memory, and IL-4 production, with no concomitant anti-Aβ T cell response.
View Article and Find Full Text PDFUltraconserved regions (UCRs) have been shown to originate non-coding RNA transcripts (T-UCRs) that have different expression profiles and play functional roles in the pathophysiology of multiple cancers. The relevance of these functions to the pathogenesis of bladder cancer (BlCa) is speculative. To elucidate this relevance, we first used genome-wide profiling to evaluate the expression of T-UCRs in BlCa tissues.
View Article and Find Full Text PDFCripto, the founding member of the EGF-CFC genes, plays an essential role in embryo development and is involved in cancer progression. Cripto is a GPI-anchored protein that can interact with various components of multiple signaling pathways, such as TGF-β, Wnt and MAPK, driving different processes, among them epithelial-mesenchymal transition, cell proliferation, and stem cell renewal. Cripto protein can also be cleaved and released outside the cell in a soluble and still active form.
View Article and Find Full Text PDFColorectal cancer is one of the most common and aggressive cancers arising from alterations in various signaling pathways, such as the WNT, RAS-MAPK, PI3K and transforming growth factor-β (TGF-β) pathways. Cripto (also called Teratocarcinoma-derived growth factor), the original member of the vertebrate EGF-CFC family, plays a key role in all of these pathways and is deeply involved in early embryo development and cancer progression. The role of Cripto in colon and breast cancer, in particular, has been investigated, as it is still not clearly understood.
View Article and Find Full Text PDFAims: Mammalian cardiomyogenesis occurs through a multistep process that requires a complex network of tightly regulated extracellular signals, which integrate with the genetic and epigenetic machinery to maintain, expand, and regulate the differentiation of cardiac progenitor cells. Pluripotent embryonic stem cells (ESCs) recapitulate many aspects of development, and have provided an excellent opportunity to dissect the molecular mechanisms underlying cardiomyogenesis, which is still incompletely defined.
Methods And Results: We provide new in vivo evidence that the G-protein-coupled receptor angiotensin receptor-like 1 (Apj) is expressed in the mesodermal cells of the second heart field, a population of cardiac progenitors that give rise to a major part of the definitive heart.
Skeletal muscle regeneration mainly depends on satellite cells, a population of resident muscle stem cells. However, our understanding of the molecular mechanisms underlying satellite cell activation is still largely undefined. Here, we show that Cripto, a regulator of early embryogenesis, is a novel regulator of muscle regeneration and satellite cell progression toward the myogenic lineage.
View Article and Find Full Text PDFCirc Res
July 2009
Rationale: Pluripotent stem cells represent a powerful model system to study the early steps of cardiac specification for which the molecular control is largely unknown. The EGF-CFC (epidermal growth factor-Cripto/FRL-1/Cryptic) Cripto protein is essential for cardiac myogenesis in embryonic stem cells (ESCs).
Objective: Here, we study the role of apelin and its G protein-coupled receptor, APJ, as downstream targets of Cripto both in vivo and in ESC differentiation.
During development of the mammalian embryo, there is a complex relation between formation of the mesoderm and the neuroectoderm. In mouse, for example, the role of the node and its mesendoderm derivatives in anterior neural specification is still debated. Mouse Cripto(-/-) embryos could potentially help settle this debate because they lack almost all embryonic endoderm and mesoderm, including the node and its derivatives.
View Article and Find Full Text PDFPax8 and TTF-1 are transcription factors involved in the morphogenesis of the thyroid gland and in the transcriptional regulation of thyroid-specific genes. Both proteins are expressed in few tissues but their simultaneous presence occurs only in the thyroid where they interact physically and functionally allowing the regulation of genes that are markers of the thyroid differentiated phenotype. TAZ is a transcriptional coactivator that regulates the activity of several transcription factors therefore playing a central role in tissue-specific transcription.
View Article and Find Full Text PDFThe EGF-CFC gene cripto governs anterior-posterior (A-P) axis specification in the vertebrate embryo. Existing models suggest that Cripto facilitates binding of Nodal to an ActRII-activin-like kinase (ALK) 4 receptor complex. Cripto also has a crucial function in cellular transformation that is independent of Nodal and ALK4.
View Article and Find Full Text PDFDuring early mouse development, the TGFbeta-related protein Nodal specifies the organizing centers that control the formation of the anterior-posterior (A-P) axis. EGF-CFC proteins are important components of the Nodal signaling pathway, most likely by acting as Nodal coreceptors. However, the extent to which Nodal activity depends on EGF-CFC proteins is still debated.
View Article and Find Full Text PDFThe relation between the role of the organizer at the gastrula stage and the activity of earlier signals in the specification, maintenance, and regionalization of the developing brain anlage is still controversial. Mouse embryos homozygous for null mutation in the cripto gene die at about 9.0 days postcoitum (d.
View Article and Find Full Text PDFThe EGF-CFC proteins have been recently recognized as a novel family of extracellular factors required during early vertebrate development. Cripto is the founder member of the EGF-CFC family initially related to the epidermal growth factor (EGF); its expression is increased in human colon, gastric, pancreatic and lung carcinoma and in different types of both mouse and human breast carcinomas. Genetic studies in the mouse have established an essential role of cripto in the formation and correct positioning of the anterior-posterior axis.
View Article and Find Full Text PDF