Publications by authors named "Giovanna Bucci"

Coarse-grained modeling tools are employed to simulate the mechanics of DNA loading within a nanoscale confinement and predict semiflexible polymer conformations within the confinement, providing design recommendations for DNA-sequencing devices. A workflow is developed to quantify competing requirements of efficiency and accuracy and extract metrics that guide design optimization. The mean first-passage time for DNA loading is calculated as a function of the nanochannel geometry and the applied electric field.

View Article and Find Full Text PDF

TASK-2, a member of the Two-Pore Domain (K2P) subfamily of K+ channels, is encoded by the KCNK5 gene. The channel is expressed primarily in renal epithelial tissues and a potentially deleterious missense variant in KCNK5 has recently been shown to be prevalent amongst patients predisposed to the development of Balkan Endemic Nephropathy (BEN), a chronic tubulointerstitial renal disease of unknown etiology. In this study we show that this variant (T108P) results in a complete loss of channel function and is associated with a major reduction in TASK-2 channel subunits at the cell surface.

View Article and Find Full Text PDF

Two-pore domain (K2P) K(+) channels are major regulators of excitability that endow cells with an outwardly rectifying background "leak" conductance. In some K2P channels, strong voltage-dependent activation has been observed, but the mechanism remains unresolved because they lack a canonical voltage-sensing domain. Here, we show voltage-dependent gating is common to most K2P channels and that this voltage sensitivity originates from the movement of three to four ions into the high electric field of an inactive selectivity filter.

View Article and Find Full Text PDF

Several recent ion channel structures have revealed large side portals, or 'fenestrations' at the interface between their transmembrane helices that potentially expose the ion conduction pathway to the lipid core of the bilayer. In a recent study we demonstrated that functional activity of the TWIK-1 K2P channel is influenced by the presence of hydrophobic residues deep within the inner pore. These residues are located near the fenestrations in the TWIK-1 structure and promote dewetting of the pore by forming a hydrophobic barrier to ion conduction.

View Article and Find Full Text PDF

α-Synuclein is thought to regulate neurotransmitter release through multiple interactions with presynaptic proteins, cytoskeletal elements, ion channels, and synaptic vesicles membrane. α-Synuclein is abundant in the presynaptic compartment, and its release from neurons and glia has been described as responsible for spreading of α-synuclein-derived pathology. α-Synuclein-dependent dysregulation of neurotransmitter release might occur via its action on surface-exposed calcium channels.

View Article and Find Full Text PDF

Recent X-ray crystal structures of the two-pore domain (K2P) family of potassium channels have revealed a unique structural architecture at the point where the cytoplasmic bundle-crossing gate is found in most other tetrameric K(+) channels. However, despite the apparently open nature of the inner pore in the TWIK-1 (K2P1/KCNK1) crystal structure, the reasons underlying its low levels of functional activity remain unclear. In this study, we use a combination of molecular dynamics simulations and functional validation to demonstrate that TWIK-1 possesses a hydrophobic barrier deep within the inner pore, and that stochastic dewetting of this hydrophobic constriction acts as a major barrier to ion conduction.

View Article and Find Full Text PDF

Background: Cortical cultures grown long-term on multi-electrode arrays (MEAs) are frequently and extensively used as models of cortical networks in studies of neuronal firing activity, neuropharmacology, toxicology and mechanisms underlying synaptic plasticity. However, in contrast to the predominantly asynchronous neuronal firing activity exhibited by intact cortex, electrophysiological activity of mature cortical cultures is dominated by spontaneous epileptiform-like global burst events which hinders their effective use in network-level studies, particularly for neurally-controlled animat ('artificial animal') applications. Thus, the identification of culture features that can be exploited to produce neuronal activity more representative of that seen in vivo could increase the utility and relevance of studies that employ these preparations.

View Article and Find Full Text PDF

Silk fibroin fibres from two different sources, Bombyx mori pure-breed silkworms and polyhybrid cross-bred silkworm cocoons, were treated with formic acid under planar stirring conditions to prepare non-woven nets. The treatment partially dissolved the fibres, which bound together and formed a non-woven micrometric net with fibres coated by a thin layer of low molecular weight fibroin matrix. The starting fibres, net materials and fibroin coating layer were characterized in terms of amino acid composition, molecular weight and calorimetric properties.

View Article and Find Full Text PDF

Modulation of presynaptic voltage-dependent Ca2+ channels is a major means of controlling neurotransmitter release. The CaV2.2Ca2+ channel subunit contains several inhibitory interaction sites for Gβγ subunits, including the amino terminal (NT) and I-II loop.

View Article and Find Full Text PDF

PKC isoenzymes play central roles in various cellular signalling pathways, participating in a variety of protein phosphorylation cascades that regulate/modulate cellular structure and gene expression. It has been firmly established that several isoforms of PKC have a role in the regulation of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) activity. Our interest in probing the role of the epsilon isoform of PKC in the colonic cell differentiation stems from the discovery that PKCε and TRAIL are involved in the differentiation of other cell types like hematopoietic stem cells.

View Article and Find Full Text PDF

Liver X receptors (LXRs) are transcription factors involved in the regulation of cholesterol homeostasis. LXR ligands have athero-protective properties independent of their effects on cholesterol metabolism. Platelets are involved in the initiation of atherosclerosis and despite being anucleate express nuclear receptors.

View Article and Find Full Text PDF

EAAT4-eGFP BAC reporter transgenic adult mice were used to detect EAAT4 gene expression in individual cells of cerebral cortex, and eGFP fluorescence was measured to compare EAAT4 promoter activity in different cells. Most eGFP+ cells were neurons; only rare GFAP+ profiles were eGFP+. About 10% of NeuN+ cells was eGFP+, and the percentage of NeuN/eGFP co-localization varied from 2 to 20% of NeuN+ cells throughout cortical layers: layers I and II-III showed the highest values of co-localization, layer IV the lowest.

View Article and Find Full Text PDF

The presence in Paramecium of gamma-aminobutyric acid A-type receptors (GABA(A)) and the capability of the protozoon to synthesize and release the GABA neurotransmitter into the environment have already been demonstrated. This study investigates the involvement of the GABA(A) complex in the swimming control of the ciliated protozoon. The GABA(A) receptors were pharmacologically activated by the selective agonist muscimol and the effect on Paramecium primaurelia swimming behavior was analyzed.

View Article and Find Full Text PDF

The effects of gamma-aminobutyric acid (GABA) on the release of glutamate from mouse spinal cord nerve endings have been studied using superfused synaptosomes. GABA elicited a concentration-dependent release of [3H]D-aspartate ([3H]D-ASP; EC50= 3.76 microM).

View Article and Find Full Text PDF

Glucose 6-phosphate transport has been well characterized in liver microsomes. The transport is required for the functioning of the glucose-6-phosphatase enzyme that is situated in the lumen of the hepatic endoplasmic reticulum. The genetic deficiency of the glucose 6-phosphate transport activity causes a severe metabolic disease termed type 1b glycogen storage disease.

View Article and Find Full Text PDF

Potassium canrenoate (PC), a competitive aldosterone antagonist previously found to increase tumor incidence in rats and to produce genotoxic effects in in vitro systems, was examined in rats to acquire information on its genotoxic activity in vivo. Intragastric administration of 1/2 LD50 produced, as revealed by the Comet assay, a modest but statistically significant increase in the frequency of DNA lesions in liver but not in thyroid and bone marrow of male rats, and in thyroid and bone marrow but not in liver of female rats. In contrast with the frankly positive responses observed in primary cultures of rat hepatocytes (Martelli et al.

View Article and Find Full Text PDF