Snail secretion is a complex mixture of several components, including proteins, glycoproteins, mucopolysaccharides and smaller molecules. Its growing use in nutraceutical, cosmetic and biomedical applications, as well as a component of edible and green packaging to replace chemical plasticizer, implies more affordable and sustainable extraction methods. We chose four extracts obtained from Cornu aspersum snails, different by origin, extraction medium (namely, citric acid, lactic acid or none) and additives and we performed a series of characterizations including the SDS-page, the measure of pH and density, the evaluation of dry matter and of protein content, supported by structural determinations by means of UV-visible and infrared spectroscopy, X-Rays diffraction and thermogravimetric measurements.
View Article and Find Full Text PDFBackground: Arbutus unedo L. is a wild tree of Mediterranean regions used as food and in traditional medicine and important for afforestation programs. There is no detailed information available on the variation of A.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) are a class of crystalline porous materials with outstanding physical and chemical properties that make them suitable candidates in many fields, such as catalysis, sensing, energy production, and drug delivery. By combining MOFs with polymeric substrates, advanced functional materials are devised with excellent potential for biomedical applications. In this research, Zeolitic Imidazolate Framework 8 (ZIF-8), a zinc-based MOF, was selected together with cellulose, an almost inexhaustible polymeric raw material produced by nature, to prepare cellulose/ZIF-8 composite flat sheets via an in-situ growing single-step method in aqueous media.
View Article and Find Full Text PDFRSC Adv
September 2023
The development of polymeric fabrics with photoinduced antibacterial activity is important for different emerging applications, ranging from materials for medical and clinical practices to disinfection of objects for public use. In this work we prepared a series of cellulose acetate membranes, by means of phase inversion technique, introducing different additives in the starting polymeric solution. The loading of 5,10,15,20-tetraphenylporphyrin (TPP), a known photosensitizer, was considered to impart antibacterial photodynamic properties to the produced membranes.
View Article and Find Full Text PDFThe development of green, low cost and sustainable synthetic routes to produce metal nanoparticles is of outmost importance, as these materials fulfill large scale applications in a number of different areas. Herein, snail slime extracted from snails was successfully employed both as bio-reducing agent of silver nitrate and as bio-stabilizer of the obtained nanoparticles. Several trials were carried out by varying temperature, the volume of snail slime and the silver nitrate concentration to find the best biogenic pathway to produce silver nanoparticles.
View Article and Find Full Text PDFIsatin and its derivatives are important heterocycles found in nature and present in numerous bioactive compounds which possess various biological activities. Moreover, it is an essential building block in organic synthesis. The discovery of novel compounds active against human pathogenic bacteria and fungi is an urgent need, and the isatin may represent the suitable scaffold in the design of biologically relevant antimicrobials.
View Article and Find Full Text PDFThe availability of biomaterials able to counteract bacterial colonization is one of the main requirements of functional implants and medical devices. Herein, we functionalized hydroxyapatite (HA) with tungsten oxide (WO) nanoparticles in the aim to obtain composite materials with improved biological performance. To this purpose, we used HA, as well as HA functionalized with polyacrilic acid (HAPAA) or poly(ethylenimine) (HAPEI), as supports and polyvinylpyrrolidone (PVP) as stabilizing agent for WO nanoparticles.
View Article and Find Full Text PDFAdvances in nanotechnology have opened up new horizons in nanomedicine through the synthesis of new composite nanomaterials able to tackle the growing drug resistance in bacterial strains. Among these, nanosilver antimicrobials sow promise for use in the treatment of bacterial infections. The use of polydopamine (PDA) as a biocompatible carrier for nanosilver is appealing; however, the synthesis and functionalization steps used to obtain Ag-PDA nanoparticles (NPs) are complex and require time-consuming cleanup processes.
View Article and Find Full Text PDFCandida albicans and Staphylococcus aureus are common human pathogens, frequently isolated independently or co-isolated from bloodstream infections, and able to form dense polymicrobial biofilms on various medical devices resulting in strong resistance to conventionally used antimicrobials. New and innovative approaches are therefore needed to ensure the successful management of biofilm related infections. In this study, a chalcone-based derivative and a polycyclic anthracene-maleimide adduct, previously ascertained by us as inhibitors of C.
View Article and Find Full Text PDFMicrobial infections occurring during bone surgical treatment, the cause of osteomyelitis and implant failures, are still an open challenge in orthopedics. Conventional therapies are often ineffective and associated with serious side effects due to the amount of drugs administered by systemic routes. In this study, a medicated osteoinductive and bioresorbable bone graft was designed and investigated for its ability to control antibiotic drug release in situ.
View Article and Find Full Text PDFGelatin-based films enriched with snail slime are proposed as novel biodegradable and naturally bioadhesive patches for cutaneous drug delivery. Films (thickness range 163-248 μm) were stretchable and they adhered firmly onto the wetted skin, especially those with high amount (70% V/V) of snail slime extract. Fluconazole was selected as model drug and added to films containing the highest amount of snail slime.
View Article and Find Full Text PDFLactic acid bacteria (LAB) "fermentates" confer a beneficial effect on intestinal function. However, the ability of new fermentations to improve LAB broth activity in preventing pathogen-induced intestinal inflammation and barrier dysfunction has not yet been studied. The objective of this study was to determine if broths of LAB fermented with or seed extracts prevent gut barrier dysfunction and interleukin-8 (CXCL8) release in vitro in human intestinal Caco-2 cells infected with enterohemorrhagic (EHEC) O157:H7.
View Article and Find Full Text PDFExtensive documentation is available on plant essential oils as a potential source of antimicrobials, including natural drugs against spp. Yeasts of the genus are responsible for various clinical manifestations, from mucocutaneous overgrowth to bloodstream infections, whose incidence and mortality rates are increasing because of the expanding population of immunocompromised patients. In the last decade, although is still regarded as the most common species, epidemiological data reveal that the global distribution of spp.
View Article and Find Full Text PDFAt present, there is no vaccine or effective standard treatment for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection (or coronavirus disease-19 (COVID-19)), which frequently leads to lethal pulmonary inflammatory responses. COVID-19 pathology is characterized by extreme inflammation and amplified immune response with activation of a cytokine storm. A subsequent progression to acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) can take place, which is often followed by death.
View Article and Find Full Text PDFNon- Enterobacterales (NECE) can colonize the human gut and may present virulence determinants and phenotypes that represent severe heath concerns. Most information is available for virulent NECE strains, isolated from patients with an ongoing infection, while the commensal NECE population of healthy subjects is understudied. In this study, 32 NECE strains were isolated from the feces of 20 healthy adults.
View Article and Find Full Text PDFSnail mucus is an attractive natural substance, which is increasingly used in cosmetic creams and syrups thanks to its emollient, moisturizing, protective and reparative properties. The aim of the present study was to explore the physicochemical properties of chitosan-based films added with snail mucus extracted from Helix Aspersa Muller. To this aim, chitosan films at different content of snail mucus were fabricated by simple solvent casting technique.
View Article and Find Full Text PDFIn this paper, a small series of anthracene-maleimide-based compounds was prepared and evaluated to assess the antimicrobial potential of this polycyclic core, a scaffold previously unexplored for new antibiotic development. Some of the new compounds showed appreciable anti- activity, together with good safety profiles. In particular, compound proved to be the most promising of the series, showing remarkable antimicrobial activity toward planktonic and sessile bacterial cells within a mature preformed biofilm.
View Article and Find Full Text PDFThe occurrence of invasive fungal infections represents a substantial threat to human health that is particularly serious in immunocompromised patients. The limited number of antifungal agents, devoid of unwanted toxic effects, has resulted in an increased demand for new drugs. Herein, the chalcone framework was functionalized to develop new antifungal agents able to interfere with cell growth and with the infection process.
View Article and Find Full Text PDFClofazimine (CLZ) is an antibiotic with a promising behavior against Gram-positive bacteria; however, the drug is completely insoluble in water and accumulates in fat tissues. We explored nanocarriers, labeled and not labeled with rhodamine, consisting of negatively charged sulfobutylether-β-cyclodextrins for CLZ loading. A new oligomeric carrier was obtained cross-linking βCyD with epichlorohydrin followed by sulfonation in a strongly alkaline aqueous medium.
View Article and Find Full Text PDFHerpes simplex virus types 1 (HSV-1) and 2 (HSV-2) cause several clinically relevant syndromes in both adults and neonates. Despite the availability of efficient anti-HSV agents, the search for new therapeutic approaches is highly encouraged due to the increasing drug resistance of virus strains. Medicinal plants represent a source of potential bioactive compounds.
View Article and Find Full Text PDFAll currently used first-line and second-line drugs for the treatment of leishmaniasis exhibit several drawbacks including toxicity, high costs and route of administration. Furthermore, some drugs are associated with the emergence of drug resistance. Thus, the development of new treatments for leishmaniasis is a priority in the field of neglected tropical diseases.
View Article and Find Full Text PDFThe development of new biomaterials able to favor bone formation and to inhibit bone abnormal resorption is mandatory to face the increasing number of age-related musculo-skeletal disorders. Moreover, the increasing antibiotic resistance of clinically important bacteria, which is among the main causes of implant failure, requires new antimicrobial systems. In this study, we prepared multifunctional materials consisting of hydroxyapatite-zoledronate composite crystals decorated with Ag Nanoparticles (AgNPs).
View Article and Find Full Text PDFIn this work we developed new antibacterial composite materials using polydopamine (PDA) to trigger the deposition of silver nanoparticles (AgNPs) onto calcium phosphates, namely octacalcium phosphate (OCP) and α-tricalcium phosphate (αTCP). Functionalization of OCP and αTCP with a self-polymerized polydopamine layer was obtained by soaking the calcium phosphates in dopamine solution. The PDA surface of functionalized calcium phosphates (OCPd and αTCPd) promoted the deposition of AgNPs by reducing silver ions when soaked in a silver nitrate solution.
View Article and Find Full Text PDF