Little is known about shifts in the fecal microbiome of dairy calves preceding and following the incidence of gastrointestinal disease. The objective of this cohort study was to describe the fecal microbiome of preweaned dairy calves before, during, and after gastrointestinal disease. A total of 111 Holstein dairy calves were enrolled on 2 dairies (D1 and D2) and followed until 5 weeks old.
View Article and Find Full Text PDFBovine respiratory disease (BRD) is a leading cause of calf morbidity and mortality, and prevalence remains high despite current management practices. Differential gene expression (DGE) provides detailed insight into individual immune responses and can illuminate enriched pathways and biomarkers that contribute to disease susceptibility and outcomes. The aims of this study were to investigate differences in peripheral leukocyte gene expression in Holstein preweaned heifer calves 1) with and without BRD, and 2) across weeks of age.
View Article and Find Full Text PDFGastrointestinal disease (GI) is the most common illness in pre-weaned dairy calves. Therefore, effective strategies to manipulate the microbiome of dairy calves under commercial dairy operations are of great importance to improve animal health and reduce antimicrobial usage. The objective of this study was to develop a farm-specific FMT product and to investigate its effects on clinical outcomes and fecal microbial composition of dairy calves.
View Article and Find Full Text PDFGastrointestinal disease (GI) is the most common illness in pre-weaned dairy calves. Studies have associated the fecal microbiome composition with health status, but it remains unclear how the microbiome changes across different levels of GI disease and breeds. Our objective was to associate the clinical symptoms of GI disease with the fecal microbiome.
View Article and Find Full Text PDFThis study aimed to evaluate the performance and metabolic changes in dairy calves fed in a step-up/step-down program and supplemented with lysine and methionine in a milk replacer (MR) or starter concentrate (SC). Male Holstein calves ( = 45) were blocked and distributed in the control without supplementation (1) and with lysine and methionine supplementation in the SC to achieve an intake of 17 and 5.3 g/d, respectively (2), and in the MR to achieve the same daily intake (3).
View Article and Find Full Text PDFDiarrhea is the most common cause of mortality and morbidity in dairy calves during the first weeks of life. It is responsible for the majority of costs related to animal death and treatments, as well as lower productivity due to reduced weight gain. Therefore, studies that focus on strategies to reduce diarrhea incidence and to improve animal welfare are very important for the dairy industry.
View Article and Find Full Text PDFThis study aimed to evaluate the performance and metabolic changes in dairy calves supplemented with lysine and methionine in milk replacer (MR) or starter concentrate (SC). Male Holstein calves ( = 45) were blocked and distributed in Control without supplementation (1) and; Lysine and Methionine supplementation to achieve an intake of 17 and 5.3 g/d in the SC (2) and to achieve of 17 and 5.
View Article and Find Full Text PDF