Publications by authors named "Giorno L"

The emergence of green chemistry and engineering principles to enforce sustainability aspects has ensured the prevalence of green solvents and green processes. Our study addresses this quest by exploring drug delivery applications of hydrophobic deep eutectic solvents (DESs) which are alternative green solvents. Initially, this work showcases the hydrophobic drug solubilization capabilities of a natural hydrophobic DES, menthol, and decanoic acid.

View Article and Find Full Text PDF

Wound healing is a complex process involving a sequence of factors that can be disrupted, negatively impacting the quality of life for patients and overburdening healthcare systems. Advanced dressings obtained by electrospinning are highlighted by the optimization of this process, allowing air exchange and protection against microorganisms. Aiming to develop bioactive dressings, this study investigated the physicochemical, mechanical, microbiological, and in vitro biological properties of membranes containing 25 %, 50 %, 75 %, and 90 % copaiba oil (CO) co-electrospun with poly(L-co-D,L-lactic acid) (PLDLA) and natural rubber latex (NR).

View Article and Find Full Text PDF

This study introduces a novel plasmonic nanocomposite platform, where gold nanoparticles (AuNPs) are synthesized in situ within a polydimethylsiloxane (PDMS) film. The innovative fabrication process leverages ethyl acetate swelling to achieve a uniform distribution of AuNPs, eliminating the need for additional reagents. The resulting nanocomposite film exhibits exceptional photothermal conversion capabilities, efficiently converting absorbed light into heat and rapidly reaching high temperatures.

View Article and Find Full Text PDF

An integrated system of three membrane bioreactors (MBRs) has been developed that cascades three different enzymatic reactions. The integrated system was applied to produce hydroxytyrosol acetate from oleuropein extracted from olive leaves. Different reactor configurations for each reaction were tested and individually optimized to select the MBR to ensure high conversion and continuous production of oleuropein aglycone (OA), hydroxytyrosol (HY) and hydroxytyrosol acetate (HA).

View Article and Find Full Text PDF

It has been observed that the immobilization of a phosphotriesterase enzyme (PTE) onto polyvinylidene fluoride (PVDF) membranes significantly decreased the enzyme activity, and this negative effect was attributed to the hydrophobic character of the membrane. The indirect indication of this reason was that the same enzyme immobilized on other membrane materials bearing hydrophilic character showed better performance. In this work, we provide direct evidence of the mechanism by immobilizing a PTE on a PVDF membrane hydrophilized by blending it with alkali lignin (AL).

View Article and Find Full Text PDF

Nanoparticles (NPs) preparation is limited to an exclusive use in batch processes and small-scale formulations. The use of membranes as high-performance micromixers is expected to open new scenarios to overcome limitations of conventional nanoprecipitation system such as stirred tank (ST) nanoprecipitation. The ability of the porous membrane to add uniformly one phase to another and govern their mixing at the membrane interface seems to be an important parameter for obtaining uniform NPs.

View Article and Find Full Text PDF

Promising initial results from the use of membrane-fractionated extracts of tomato leaf as crop protection agents have recently been reported. This paper provides additional evidence from larger scale experiments that identify an efficient pipeline for the separation of tomato leaf extracts to generate a fraction with significant defence elicitor activity. A UF tubular membrane 150 kDa, with an internal diameter of 5 mm, proved appropriate for initial extract clarification, whereas afterwards a UF 10 kDa and three NF membranes (200-800 Da) in sequence were evaluated for the subsequent fractionation of this tomato extract.

View Article and Find Full Text PDF

Latex is a colloidal suspension derived from the Hevea brasiliensis tree, derived from natural rubber, poly(isoprene), and assorted constituents including proteins and phospholipids. These constituents are inherent to both natural rubber and latex serum. This investigation was undertaken to examine the impact of the deproteinization process on chemical and biological dynamics of natural rubber latex.

View Article and Find Full Text PDF

Ionotropic gelation (IG) is a highly attractive method for the synthesis of natural water-soluble polymeric nanoparticles (NPs) and sub-micron particles (sMP) due to its relatively simple procedure and the absence of organic solvents. The method involves the electrostatic interaction between two ionic species of opposite charge. Although it is well studied at the laboratory scale, the difficulty to achieve size control in conventional bench-top process is actually a critical aspect of the technology.

View Article and Find Full Text PDF

Objective: To collate and summarise the literature on the quality improvement tools that have been developed for deceased organ donation processes after circulatory determination of death and neurological determination of death.

Design: Scoping review using the Joanna Briggs Institute framework.

Data Sources: We searched for published (MEDLINE, Embase, PsycINFO, CINAHL, Web of Science) and unpublished literature (organ donation organisation websites worldwide).

View Article and Find Full Text PDF

Muscle tissue is formed by elongated and contractile cells with specific morphofunctional characteristics. Thus, it is divided into three basic types: smooth muscle tissue, cardiac striated muscle tissue and skeletal striated muscle tissue. The striated skeletal muscle tissue presents high plasticity, regeneration and growth capacity due to the presence of satellite cells, quiescent myoblasts that are activated in case of injury to the tissue and originate new muscle fibers when they differentiate.

View Article and Find Full Text PDF

This work aims at understanding the attachment mechanisms and stability of proteins on a chromatography medium to develop more efficient functionalization methodologies, which can be exploited in affinity chromatography. In particular, the study was focused on the understanding of the attachment mechanisms of bovine serum albumin (BSA), used as a ligand model, and protein G on novel amine-modified alumina monoliths as a stationary phase. Protein G was used to develop a column for antibody purification.

View Article and Find Full Text PDF

Tomato leaves have been shown to contain significant amounts of important metabolites involved in protection against abiotic and biotic stress and/or possessing important therapeutic properties. In this work, a systematic study was carried out to evaluate the potential of a sustainable process for the fractionation of major biomolecules from tomato leaves, by combining aqueous extraction and membrane processes. The extraction parameters (temperature, pH, and liquid/solid ratio (L/S)) were optimized to obtain high amounts of biomolecules (proteins, carbohydrates, biophenols).

View Article and Find Full Text PDF

Aim: To collate and summarize the literature on what quality improvement tools have been developed on safety of deceased organ donation processes for donation after circulatory determination of death and neurological determination of death.

Background: The increasing organ shortage requires that organ donation organizations take preventive measures to improve their processes and maximize organ donation opportunities. Quality improvement tools can be used to facilitate daily activities, prevent errors and enhance organ donation processes.

View Article and Find Full Text PDF

In this review, for the first time, the conjugation of the major types of enzymes used in biorefineries and the membrane processes to develop different configurations of MBRs, was analyzedfor the production of biofuels, phytotherapics and food ingredients. In particular, the aim is to critically review all the works related to the application of MBR in biorefinery, highlighting the advantages and the main drawbacks which can interfere with the development of this system at industrial scale. Alternatives strategies to overcome main limits will be also described in the different application fields, such as the use of biofunctionalized magnetic nanoparticles associated with membrane processes for enzyme re-use and membrane cleaning or the membrane fouling control by the use of integrated membrane process associated with MBR.

View Article and Find Full Text PDF

Multiphase bioreactors using interfacial biocatalysts are unique tools in life sciences such as pharmaceutical and biotechnology. In such systems, the formation of microdroplets promotes the mass transfer of reagents between two different phases, and the reaction occurs at the liquid-liquid interface. Membrane emulsification is a technique with unique properties in terms of precise manufacturing of emulsion droplets in mild operative conditions suitable to preserve the stability of bioactive labile components.

View Article and Find Full Text PDF

Natural products and herbal therapies represent a thriving field of research, but methods for the production of plant-derived compounds with a significative biological activity by synthetic methods are required. Conventional commercial production by chemical synthesis or solvent extraction is not yet sustainable and economical because toxic solvents are used, the process involves many steps, and there is generally a low amount of the product produced, which is often mixed with other or similar by-products. For this reason, alternative, sustainable, greener, and more efficient processes are required.

View Article and Find Full Text PDF

Membrane-assisted crystallization is an emerging technology where microporous hydrophobic membranes are used not as selective barriers but to promote the water vapor transfer between phases inducing supersaturation in solution. This has been successfully tested in the crystallization of ionic salts, low molecular weight organic acids and proteins. In this work, molecular dynamics simulations were used to study the crystal nucleation and growth of sodium chloride in contact with hydrophobic polymer surfaces at a supersaturated concentration of salt.

View Article and Find Full Text PDF

Solid-gas biocatalysis was performed in a specially designed continuous biocatalytic membrane reactor (BMR). In this work, lipase from (LCR) and ethyl acetate in vapor phase were selected as model enzyme and substrate, respectively, to produce acetic acid and ethanol. LCR was immobilized on functionalized PVDF membranes by using two different kinds of chemical bond: electrostatic and covalent.

View Article and Find Full Text PDF

The effects of confinement of multilayer graphene platelets in hydrophobic microporous polymeric membranes are here examined. Intermolecular interactions between water vapour molecules and nanocomposite membranes are envisaged to originate assisted transport of water vapour in membrane distillation processes when a suitable filler-polymer ratio is reached. Mass transport coefficients are estimated under different working conditions, suggesting a strong dependence of the transport on molecular interactions.

View Article and Find Full Text PDF

Organophosphates (OPs) are highly toxic compounds used as pesticides and nerve agents. The devastating effects, reported in different studies, on the environment and human health indicate a serious scenario for both instantaneous and long terms effects. Bio-based strategies for OPs degradation seem the most promising solutions, particularly when extremophiles enzymes are used.

View Article and Find Full Text PDF

We demonstrate the label-free and selective detection of interleukin-6 (IL-6), a key cell-signaling molecule in biology and medicine, by integrating an OECT with an immuno-affinity regenerated cellulose membrane. The objective of the membrane is to increase the local concentration of IL-6 at the sensing electrode and, thereby, enhance the device response for concentrations falling within the physiological concentration range of cytokines. The OECT gate electrode is functionalized with an oligo(ethylene glycol)-terminated self-assembled alkanethiolate monolayer (SAM) for both the immobilization of anti IL-6 antibodies and the inhibition of non-specific biomolecule binding.

View Article and Find Full Text PDF

The need to find alternative bioremediation solutions for organophosphate degradation pushed the research to develop technologies based on organophosphate degrading enzymes, such as phosphotriesterase. The use of free phosphotriesterase poses limits in terms of enzyme reuse, stability, and process development. The heterogenization of enzyme on a support and their use in bioreactors implemented by membranes seems a suitable strategy, thanks to the ability of membranes to compartmentalize, to govern mass transfer, and to provide a microenvironment with tuned physicochemical and structural properties.

View Article and Find Full Text PDF

A photoactive gel has been fabricated on the surface of polyethylene membranes for enhancing the fouling resistance during olive mill wastewater treatment. Light and pH responsive materials have been introduced in the membrane surface through the build up of a layer-by-layer pattern, which is formed by photocatalytic nanoparticles and ionic polyelectrolytes. The best working conditions to contrast foulants adsorption have been explored and identified.

View Article and Find Full Text PDF