Arthropods are vectors for many pathogens that significantly harm human and animal health globally, and research into vector-borne diseases is of critical public health importance. Arthropods present unique risks for containment, and therefore insectary facilities are essential to the safe handling of arthropod-borne hazards. In 2018, the School of Life Sciences at Arizona State University (ASU) began the process to build a level 3 arthropod containment (ACL-3) facility.
View Article and Find Full Text PDFWe developed means to deliver multiple heterologous antigens on dual plasmids with non-antibiotic-resistance markers in a single recombinant attenuated vaccine strain of Salmonella enterica serotype Typhimurium. The first component of this delivery system is a strain of S. Typhimurium carrying genomic deletions in alr, dadB, and asd, resulting in obligate requirements for diaminopimelic acid (DAP) and d-alanine for growth.
View Article and Find Full Text PDFWe have developed a regulated delayed antigen synthesis (RDAS) system for use in recombinant attenuated Salmonella vaccine (RASV) strains to enhance immune responses by reducing the adverse effects of high-level antigen synthesis. This system includes a chromosomal repressor gene, lacI, expressed from the arabinose-regulated araC PBAD promoter. LacI serves to regulate expression from a plasmid promoter, Ptrc, that directs antigen synthesis.
View Article and Find Full Text PDFStreptococcus pneumoniae is a leading cause of morbidity and mortality among children worldwide and particularly in developing countries. In this study, we evaluated PsaA, a conserved antigen important for S. pneumoniae adhesion to and invasion into nasopharynx epithelia, for its ability to induce protective immunity against S.
View Article and Find Full Text PDFIncreasing the immunogenicity to delivered antigens by recombinant attenuated Salmonella vaccines (RASV) has been the subject of intensive study. With this goal in mind, we have designed and constructed a new generation of RASV that exhibit regulated delayed attenuation. These vaccine strains are phenotypically wild type at the time of immunization and become attenuated after colonization of host tissues.
View Article and Find Full Text PDFSopB is a virulence factor of Salmonella encoded by SPI-5. Salmonella sopB deletion mutants are impaired in their ability to cause local inflammatory responses and fluid secretion into the intestinal lumen and also can enhance the immunogenicity of a vectored antigen. In this study, we evaluated the effects on immunogenicity and the efficacy of a sopB deletion mutation on two Salmonella enterica serovar Typhimurium vaccine strains with different attenuating mutations expressing a highly antigenic alpha-helical region of the Streptococcus pneumoniae surface protein PspA from an Asd(+)-balanced lethal plasmid.
View Article and Find Full Text PDF