Publications by authors named "Giorgio Prantera"

Alzheimer's disease (AD) brains are histologically marked by the presence of intracellular and extracellular amyloid deposits, which characterize the onset of the disease pathogenesis. Increasing evidence suggests that certain nutrients exert a direct or indirect effect on amyloid β (Aβ)-peptide production and accumulation and, consequently, on AD pathogenesis. We exploited the fruit fly model of AD to evaluate in vivo the beneficial properties of Lisosan G, a fermented powder obtained from organic whole grains, on the intracellular Aβ-42 peptide accumulation and related pathological phenotypes of AD.

View Article and Find Full Text PDF

The natural compound plumbagin has a wide range of pharmacological and potential therapeutic activities, although its role in neuroretina degeneration is unknown. Here we evaluated the effects of plumbagin on retina homeostasis of the fruit fly Drosophila melanogaster fed with high glucose diet, a model of hyperglycemia-induced eye impairment to study the pathophysiology of diabetic retinopathy at the early stages. To this aim, the visual system of flies orally administered with plumbagin has been analyzed at structural, functional, and molecular/cellular level as for instance neuronal apoptosis/autophagy dysregulation and oxidative stress-related signals.

View Article and Find Full Text PDF

Skeletal muscle growth and regeneration involves the activity of resident adult stem cells, namely satellite cells (SC). Despite numerous mechanisms have been described, different signals are emerging as relevant in SC homeostasis. Here we demonstrated that the Receptor for Activated C-Kinase 1 (RACK1) is important in SC function.

View Article and Find Full Text PDF

Plant-derived polyphenols exhibit beneficial effects on physiological and pathological processes, including cancer and neurodegenerative disorders, mainly because of their antioxidant activity. Apples are highly enriched in these compounds, mainly in their peel. The Tuscia Red (TR) apple variety exhibits the peculiar characteristic of depositing high quantities of polyphenols in the pulp, the edible part of the fruit.

View Article and Find Full Text PDF

Aberrant production of reactive oxygen species (ROS) is a common feature of damaged retinal neurons in diabetic retinopathy, and antioxidants may exert both preventive and therapeutic action. To evaluate the beneficial and antioxidant properties of food supplementation with Lisosan G, a powder of bran and germ of grain () obtained by fermentation with selected lactobacillus and natural yeast strains, we used an in vivo model of hyperglycemia-induced retinal damage, the fruit fly fed with high-sucrose diet. Lisosan G positively affected the visual system of hyperglycemic flies at structural/functional level, decreased apoptosis, and reactivated protective autophagy at the retina internal network.

View Article and Find Full Text PDF

Loss of retinal neurons may precede clinical signs of diabetic retinopathy (DR). We studied for the first time the effects of hyperglycemia on the visual system of the fruit fly Drosophila melanogaster to characterize a model for glucose-induced retinal neurodegeneration, thus complementing more traditional vertebrate systems. Adult flies were fed with increased high-sucrose regimens which did not modify the locomotion ability, muscle phenotype and mobility after 10 days.

View Article and Find Full Text PDF

Cytokinesis is monitored by a molecular machinery that promotes the degradation of the intercellular bridge, a transient protein structure connecting the two daughter cells. Here, we found that CSA and CSB, primarily defined as DNA repair factors, are located at the midbody, a transient structure in the middle of the intercellular bridge, where they recruit CUL4 and MDM2 ubiquitin ligases and the proteasome. As a part of this molecular machinery, CSA and CSB contribute to the ubiquitination and the degradation of proteins such as PRC1, the Protein Regulator of Cytokinesis, to ensure the correct separation of the two daughter cells.

View Article and Find Full Text PDF

Dystrophin (dys) mutations predispose Duchenne muscular disease (DMD) patients to brain and retinal complications. Although different dys variants, including long dys products, are expressed in the retina, their function is largely unknown. We investigated the putative role of full-length dystrophin in the homeostasis of neuro-retina and its impact on synapsis stabilization and cell fate.

View Article and Find Full Text PDF

Telomere shortening has been supposed to be implicated in both aging and various human diseases especially carcinogenesis process. This phenomenon can lead to a chromosomal instability, contributing to a cell immortalization and tumor induction. In our study, we analyzed the role of telomere shortening in cancer progression, in Tunisian patients with digestive cancer.

View Article and Find Full Text PDF

We synthesized and characterized MOMO as a new small molecule analog of the cytotoxic natural product climacostol efficiently activated in mild extracellular acidosis. The synthesis of MOMO had a key step in the Wittig olefination for the construction of the carbon-carbon double bond in the alkenyl moiety of climacostol. The possibility of obtaining the target ()-alkenyl MOMO derivative in very good yield and without presence of the less active ()-diastereomer was favored from the methoxymethyl ether (MOM)-protecting group of hydroxyl functions in aromatic ring of climacostol aldehyde intermediate.

View Article and Find Full Text PDF

The DNA repair protein Cockayne syndrome group B (CSB) is frequently found overexpressed in cancer cells. High CSB levels favor tumor cell proliferation whilst inhibiting apoptosis. Conversely, the suppression of CSB has significant anticancer effects.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the post-transcriptional level. Current studies have shown that miRNAs are also present in extracellular spaces, packaged into various membrane-bound vesicles, or associated with RNA-binding proteins. Circulating miRNAs are highly stable and can act as intercellular messengers to affect many physiological processes.

View Article and Find Full Text PDF

Lamin family proteins are structural components of a filamentous framework, the nuclear lamina (NL), underlying the inner membrane of nuclear envelope. The NL not only plays a role in nucleus mechanical support and nuclear shaping, but is also involved in many cellular processes including DNA replication, gene expression and chromatin positioning. Spermatogenesis is a very complex differentiation process in which each stage is characterized by nuclear architecture dramatic changes, from the early mitotic stage to the sperm differentiation final stage.

View Article and Find Full Text PDF
Article Synopsis
  • The CSB protein is part of the SWI/SNF family and is involved in transcription coupled repair (TCR), a subtype of nucleotide excision repair (NER).
  • Mutations in the CSB gene are linked to Cockayne syndrome group B, which leads to growth failure and organ degeneration.
  • Recent research using TAP technology and mass spectrometry identified 33 new proteins interacting with CSB, suggesting it may also play roles in RNA metabolism and chromatin dynamics beyond just DNA repair.
View Article and Find Full Text PDF

Previous studies of RAE1, a conserved WD40 protein, in Schizosaccharomyces pombe and mouse revealed a role in mRNA export and cell cycle progression in mitotic cells. Studies of RAE1 in Drosophila showed that the protein localizes to the nuclear envelope and is required for progression through the G1 phase of the cell cycle but not RNA export in tissue culture cells. Drosophila RAE1 also plays an essential developmental role, as it is required for viability and synaptic growth regulation as a component of an E3 ubiquitin ligase complex.

View Article and Find Full Text PDF
Article Synopsis
  • The study found that various cancer cell lines have significantly higher levels of the CSB protein, which is crucial for DNA repair and cell survival.
  • Eliminating CSB with antisense technology severely reduces the growth of cancer cells and causes them to undergo apoptosis, while healthy cells remain unaffected.
  • Targeting CSB in cancer cells could be a promising strategy for developing new cancer treatments, as it selectively impacts cancerous cells without damaging normal cells.
View Article and Find Full Text PDF

Recently, epigenetics has had an ever-growing impact on research not only for its intrinsic interest but also because it has been implied in biological phenomena, such as tumor emergence and progression. The first epigenetic phenomenon to be described in the early 1960s was chromosome imprinting in some insect species (sciaridae and coccoideae). Here, we discuss recent experimental results to dissect the phenomenon of imprinted facultative heterochromatinization in Lecanoid coccids (mealybugs).

View Article and Find Full Text PDF

The establishment of sex-specific epigenetic marks during gametogenesis is one of the key feature of genomic imprinting. By immunocytological analysis, we thoroughly characterized the chromatin remodeling events that take place during gametogenesis in the mealybug Planococcus citri, in which an entire haploid set of (imprinted) chromosomes undergoes facultative heterochromatinization in male embryos. Building on our previous work, we have investigated the interplay of several epigenetic marks in the regulation of this genome-wide phenomenon.

View Article and Find Full Text PDF

Using RNA interference (RNAi) we have conducted a functional analysis of the HP1-like chromobox gene pchet2 during embryogenesis of the mealybug Planococcus citri. Knocking down pchet2 expression results in decondensation of the male-specific chromocenter that normally arises from the developmentally-regulated facultative heterochromatinisation of the paternal chromosome complement. Together with the disappearance of the chromocenter the staining levels of two associated histone modifications, tri-methylated lysine 9 of histone H3 [Me(3)K9H3] and tri-methylated lysine 20 of histone H4 [Me(3)K20H4], are reduced to undetectable levels.

View Article and Find Full Text PDF

In Drosophila melanogaster, the two chromosomal proteins HP1 and HP2 colocalize on heterochromatic and euchromatic sites in polytene chromosomes. Mutations in the HP2 gene act as dominant suppressors of position effect variegation, demonstrating a role for HP2 in the formation or maintenance of heterochromatin. In this paper, we investigated whether a putative homolog of the D.

View Article and Find Full Text PDF

Tri-methylated lysine 20 on histone H4 (Me(3)K20H4) is a marker of constitutive heterochromatin in murine interphase and metaphase cells. Heterochromatin marked by Me(3)K20H4 replicates late during S phase of the cell cycle. Serum starvation increases the number of cells that exhibit high levels of Me(3)K20H4 at constitutive heterochromatin.

View Article and Find Full Text PDF

In the males of lecanoid coccids, or mealybugs, an entire, paternally derived, haploid chromosome set becomes heterochromatic after the seventh embryonic mitotic cycle. In females, both haploid sets are euchromatic throughout the life cycle. In mealybugs, as in all homopteran species, chromosomes are holocentric.

View Article and Find Full Text PDF

In lecanoid Coccids, or mealybugs, the male development is accompanied by the facultative heterochromatization of the entire, paternally derived, haploid chromosome set. This epigenetic phenomenon occurs in all the cells of mid-cleavage male embryos. Consequently, the Coccid chromosome system offers a powerful tool for gaining insights into the structure of facultative heterochromatin, and into the epigenetic mechanisms of its imprinted, developmentally regulated formation.

View Article and Find Full Text PDF

We show that methylated lysine 9 of histone H3 (Me9H3) is a marker of heterochromatin in divergent animal species. It localises to both constitutive and facultative heterochromatin and replicates late in S-phase of the cell cycle. Significantly, Me9H3 is enriched in the inactive mammalian X chromosome (Xi) in female cells, as well as in the XY body during meiosis in the male, and forms a G-band pattern along the arms of the autosomes.

View Article and Find Full Text PDF

It has been suggested that an atypical course of primary infection by EBV and the reactivation of EBV infection in transplanted patients may induce hepatitis. We explored the possibility to dissect the infectious activity from the ability to promote B lymphocyte proliferation in vivo by injecting in nu/nu mice a low number (2 x 10(6)-0.05 x 10(6)) of cells from CE a normal human bone marrow-derived B cell line.

View Article and Find Full Text PDF