Neuroblastoma is a severe childhood disease, accounting for ~10% of all infant cancers. The amplification of the MYCN gene, coding for the N-Myc transcription factor, is an essential marker correlated with tumor progression and poor prognosis. In neuroblastoma cells, the mitotic kinase Aurora-A (AURKA), also frequently overexpressed in cancer, prevents N-Myc degradation by directly binding to a highly conserved N-Myc region.
View Article and Find Full Text PDFDe novo thymidylate synthesis is a crucial pathway for normal and cancer cells. Deoxythymidine monophosphate (dTMP) is synthesized by the combined action of three enzymes: serine hydroxymethyltransferase (SHMT1), dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS), with the latter two being targets of widely used chemotherapeutics such as antifolates and 5-fluorouracil. These proteins translocate to the nucleus after SUMOylation and are suggested to assemble in this compartment into the thymidylate synthesis complex.
View Article and Find Full Text PDFThe major cause of bacterial resistance to β-lactams is the production of hydrolytic β-lactamase enzymes. Nowadays, the combination of β-lactam antibiotics with β-lactamase inhibitors (BLIs) is the main strategy for overcoming such issues. Nevertheless, particularly challenging β-lactamases, such as OXA-48, pose the need for novel and effective treatments.
View Article and Find Full Text PDFA proprietary library of novel -aryl-substituted amino acid derivatives bearing a hydroxamate head group allowed the identification of compound that possesses weak proadipogenic and peroxisome proliferator-activated receptor γ (PPARγ) activating properties. The systematic optimization of , in order to improve its PPARγ agonist activity, led to the synthesis of compound (-aryl-substituted valine derivative) that possesses dual PPARγ/PPARα agonistic activity. Structural and kinetic analyses reveal that occupies the typical ligand binding domain of the PPARγ agonists with, however, a unique high-affinity binding mode.
View Article and Find Full Text PDFMatrix metalloproteinases (MMPs) are a family of enzymes involved at different stages of cancer progression and metastasis. We previously identified a novel class of bisphosphonic inhibitors, selective for MMPs crucial for bone remodeling, such as MMP-2. Due to the increasing relevance of specific MMPs at various stages of tumor malignancy, we focused on improving potency towards certain isoforms.
View Article and Find Full Text PDFPPARγ represents a key target for the treatment of type 2 diabetes and metabolic syndrome. Synthetic antidiabetic drugs activating PPARγ are accompanied by serious undesirable side effects related to their agonism. In the search for new PPARγ regulators, inhibitors of PPARγ phosphorylation on S245 mediated by CDK5 represent an opportunity for the development of an improved generation of antidiabetic drugs acting through this nuclear receptor.
View Article and Find Full Text PDFA new series of derivatives of the PPARα/γ dual agonist 1 allowed us to identify the ligand ( S)-6 as a potent partial agonist of both PPARα and γ subtypes. X-ray studies in PPARγ revealed two different binding modes of ( S)-6 to the canonical site. However, ( S)-6 was also able to bind an alternative site as demonstrated by transactivation assay in the presence of a canonical PPARγ antagonist and supported from docking experiments.
View Article and Find Full Text PDFAffinity-based methods using immobilized proteins are important approaches for understanding the interactions between small molecules and biological targets. This review is intended to provide an overview of different affinity based separation methods that have been applied to the study of peroxisome proliferator activated receptors (PPARs). The screening of compound to increase screening rates for synthetic and natural ligands of PPAR are reported.
View Article and Find Full Text PDFPPAR antagonists are ligands that bind their receptor with high affinity without transactivation activity. Recently, they have been demonstrated to maintain insulin-sensitizing and antidiabetic properties, and they serve as an alternative treatment for metabolic diseases. In this work, an affinity-based bioassay was found to be effective for selecting PPAR ligands from the dried extract of an African plant (Diospyros bipindensis).
View Article and Find Full Text PDFThe peroxisome proliferator-activated receptors (PPARs) are nuclear receptors involved in the regulation of the metabolic homeostasis and therefore represent valuable therapeutic targets for the treatment of metabolic diseases. The development of more balanced drugs interacting with PPARs, devoid of the side-effects showed by the currently marketed PPARγ full agonists, is considered the major challenge for the pharmaceutical companies. Here we present a structure-based virtual screening approach that let us identify a novel PPAR pan-agonist with a very attractive activity profile and its crystal structure in the complex with PPARα and PPARγ, respectively.
View Article and Find Full Text PDFNew catechol-containing chemical entities have been investigated as matrix metalloproteinase inhibitors as well as antioxidant molecules. The combination of the two properties could represent a useful feature due to the potential application in all the pathological processes characterized by increased proteolytic activity and radical oxygen species (ROS) production, such as inflammation and photoaging. A series of catechol-based molecules were synthesized and tested for both proteolytic and oxidative inhibitory activity, and the detailed binding mode was assessed by crystal structure determination of the complex between a catechol derivative and the matrix metalloproteinase-8.
View Article and Find Full Text PDFA series of saponins and sapogenins from Medicago species were tested for their ability to bind and activate the nuclear receptor PPARγ by SPR experiments and transactivation assay, respectively. The SPR analysis proved to be a very powerful and fast technique for screening a large number of compounds for their affinity to PPARγ and selecting the better candidates for further studies. Based on the obtained results, the sapogenin caulophyllogenin was proved to be a partial agonist towards PPARγ and the X-ray structure of its complex with PPARγ was also solved, in order to investigate the binding mode in the ligand binding domain of the nuclear receptor.
View Article and Find Full Text PDFMetaglidasen is a fibrate-like drug reported as a selective modulator of peroxisome proliferator-activated receptor γ (PPARγ), able to lower plasma glucose levels in the absence of the side effects typically observed with thiazolidinedione antidiabetic agents in current use. Herein we report an improved synthesis of metaglidasen's metabolically active form halofenic acid (R)-2 and that of its enantiomer (S)-2. The activity of the two stereoisomers was carefully examined on PPARα and PPARγ subtypes.
View Article and Find Full Text PDFThe peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate glucose and lipid metabolism. The role of PPARs in several chronic diseases such as type 2 diabetes, obesity and atherosclerosis is well known and, for this reason, they are the targets of antidiabetic and hypolipidaemic drugs. In the last decade, some rare mutations in human PPARγ that might be associated with partial lipodystrophy, dyslipidaemia, insulin resistance and colon cancer have emerged.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors regulating lipid and glucose metabolism. Ongoing drug discovery programs aim to develop dual PPARα/γ agonists devoid of the side effects of the marketed antidiabetic agents thiazolidinediones and the dual agonists glitazars. Recently, we described a new dual PPARα/γ ligand, LT175, with a partial agonist profile against PPARγ and interacting with a newly identified region of the PPARγ-ligand binding domain (1).
View Article and Find Full Text PDFThe plastoquinone (Q(B)) binding niche of the Photosystem II (PSII) D1 protein is the subject of intense research due to its capability to bind also anthropogenic pollutants. In this work, the Chlamydomonas reinhardtii D1 primary structure was used as a template to computationally design novel peptides enabling the binding of the herbicide atrazine. Three biomimetic molecules, containing the Q(B)-binding site in a loop shaped by two α-helices, were reconstituted by automated protein synthesis, and their structural and functional features deeply analysed by biophysical techniques.
View Article and Find Full Text PDFPPARs are transcription factors that govern lipid and glucose homeostasis and play a central role in cardiovascular disease, obesity, and diabetes. Thus, there is significant interest in developing new agonists for these receptors. Given that the introduction of fluorine generally has a profound effect on the physical and/or biological properties of the target molecule, we synthesized a series of fluorinated analogs of the previously reported compound 2, some of which turned out to be remarkable PPARα and PPARγ dual agonists.
View Article and Find Full Text PDFMolecular dynamics simulations were performed on two ureidofibrate-like enantiomers to gain insight into their different potency and efficacy against PPARgamma. The partial agonism of the S enantiomer seems to be due to its capability to stabilize different regions of the receptor allowing the interaction with both coactivators and corepressors as shown by fluorescence resonance energy transfer (FRET) assays. The recruitment of the corepressor N-CoR1 by the S enantiomer on two different responsive elements of PPARgamma regulated promoters was confirmed by chromatin immunoprecipitation assays.
View Article and Find Full Text PDFJ Med Chem
October 2009
The preparation of a new series of 2-aryloxy-3-phenyl-propanoic acids, resulting from the introduction of a linker into the diphenyl system of the previously reported PPARalpha/gamma dual agonist 1, allowed the identification of new ligands with improved potency on PPARalpha and unchanged activity on PPARgamma. For the most interesting stereoisomers S-2 and S-4, X-ray studies in PPARgamma and docking experiments in PPARalpha provided a molecular explanation for their different behavior as full and partial agonists of PPARalpha and PPARgamma, respectively. Due to the adverse effects provoked by hypolipidemic drugs on skeletal muscle function, we also investigated the blocking activity of S-2 and S-4 on skeletal muscle membrane chloride channel conductance and found that these ligands have a pharmacological profile more beneficial compared to fibrates currently used in therapy.
View Article and Find Full Text PDFThe mode of binding and the activity of the first two non-zinc chelating, potent, and selective inhibitors of human neutrophil collagenase are reported. The crystal structures of the catalytic domain of MMP-8, respectively complexed with each inhibitor, reveals that both ligands are deeply inserted into the primary specificity subsite S(1)', where they induce a similar conformational change of the surrounding loop that is endowed with the main specificity determinants of MMPs. Accord to this rearrangement, both inhibitors remove the floor of the pocket formed by the Y227 side-chain, rendering available an extra binding region never explored before.
View Article and Find Full Text PDFThe peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors regulating glucose and lipid metabolism. The search for new PPAR ligands with reduced adverse effects with respect to the marketed antidiabetic agents thiazolidinediones (TZDs) and the dual-agonists glitazars is highly desired. We report the crystal structure and activity of the two enantiomeric forms of a clofibric acid analogue, respectively complexed with the ligand-binding domain (LBD) of PPARgamma, and provide an explanation on a molecular basis for their different potency and efficacy against PPARgamma.
View Article and Find Full Text PDFThe peroxisome proliferator-activated receptors (PPARs) are transcriptional regulators of glucose and lipid metabolism. They are activated by natural ligands, such as fatty acids, and are also targets of synthetic antidiabetic and hypolipidemic drugs. By using cell-based reporter assays, we studied the transactivation activity of two enantiomeric ureidofibrate-like derivatives.
View Article and Find Full Text PDFMolecular Dynamics simulations in aqueous solution were performed for the matrix metalloproteinase-8 (MMP-8) free catalytic domain and for its complexes with the (R)- and (S)-[1-(4'-methoxybiphenyl-4-sulfonylamino)-2-methylpropyl] phosphonate. The 144-155 loop of the enzyme undergoes a drastic decrease of mobility once complexed with both enantiomers. The two enantiomers induce a different decrease of conformational entropy upon complexation.
View Article and Find Full Text PDFPotent and selective inhibitors of matrix metalloproteinases (MMPs), a family of zinc proteases that can degrade all the components of the extracellular matrix, could be useful for treatment of diseases such as cancer and arthritis. The most potent MMP inhibitors are based on hydroxamate as zinc-binding group (ZBG). alpha-Arylsulfonylamino phosphonates incorporate a particularly favorable combination of phosphonate as ZBG and arylsulfonylamino backbone so that their affinity exceptionally attains the nanomolar strength frequently observed for hydroxamate analogues.
View Article and Find Full Text PDF