Parvovirus B19 (B19V) is a human pathogen belonging to the family. It is widely diffused in the population and responsible for a wide range of diseases, diverse in pathogenetic mechanisms, clinical course, and severity. B19V infects and replicates in erythroid progenitor cells (EPCs) in the bone marrow leading to their apoptosis.
View Article and Find Full Text PDFThe XVIII International Parvovirus Workshop took place in Rimini, Italy, from 14 to 17 June 2022 as an on-site event, continuing the series of meetings started in 1985 and continuously held every two years. The communications dealt with all aspects of research in the field, from evolution and structure to receptors, from replication to trafficking, from virus-host interactions to clinical and veterinarian virology, including translational issues related to viral vectors, gene therapy and oncolytic parvoviruses. The oral communications were complemented by a poster exhibition available for view and discussion during the whole meeting.
View Article and Find Full Text PDFIn the present study, the antiviral activity of cannabinoids isolated from L. was assessed against a panel of SARS-CoV-2 variants, indicating cannabidiolic acid (CBDA) was the most active. To overcome the instability issue of CBDA, its methyl ester was synthesized and tested for the first time for its antiviral activity.
View Article and Find Full Text PDFViral infections can lead to transplant dysfunction, and their possible role in rejection is described. In total, 218 protocol biopsies performed in 106 children at 6, 12 and 24 months after transplantation were analyzed according to Banff '15. RT-PCR for cytomegalovirus, Epstein-Barr virus, BK virus and Parvovirus B19 was performed on blood and bioptic samples at the time of transplant and each protocol biopsy.
View Article and Find Full Text PDFMesenchymal stromal/stem cells (MSCs) are multipotent cells with differentiation, immunoregulatory and regenerative properties. Because of these features, they represent an attractive tool for regenerative medicine and cell-based therapy. However, MSCs may act as a reservoir of persistent viruses increasing the risk of failure of MSCs-based therapies and of viral transmission, especially in immunocompromised patients.
View Article and Find Full Text PDFHuman parvovirus B19 (B19V) is a major human pathogen causing a variety of diseases, characterized by a selective tropism to human progenitor cells in bone marrow. In similar fashion to all Parvoviridae members, the B19V ssDNA genome is replicated within the nucleus of infected cells through a process which involves both cellular and viral proteins. Among the latter, a crucial role is played by non-structural protein (NS)1, a multifunctional protein involved in genome replication and transcription, as well as modulation of host gene expression and function.
View Article and Find Full Text PDFParvovirus B19 (B19V) is a ssDNA human virus, responsible for an ample range of clinical manifestations. Sequencing of B19V DNA from clinical samples is frequently reported in the literature to assign genotype (genotypes 1-3) and for finer molecular epidemiological tracing. The increasing availability of Next Generation Sequencing (NGS) with its depth of coverage potentially yields information on intrinsic sequence heterogeneity; however, integration of this information in analysis of sequence variation is not routinely obtained.
View Article and Find Full Text PDFParvovirus B19 (B19V) is a human pathogenic virus of clinical relevance, characterized by a selective tropism for erythroid progenitor cells in bone marrow. Relevant information on viral characteristics and lifecycle can be obtained from experiments involving engineered genetic systems in appropriate in vitro cellular models. Previously, a B19V genome of defined consensus sequence was designed, synthesized and cloned in a complete and functional form, able to replicate and produce infectious viral particles in a producer/amplifier cell system.
View Article and Find Full Text PDFActivation of interferon (IFN) mediated responses and the consequent expression of restriction factors (RFs) represent an early line of defense against HIV-1 infection. The levels of viral replication and the antiviral are among the determinants influencing RFs' expression pattern. A deeper understanding of the molecular mechanisms regulating RFs activity and their relationship with viral replication factors might lead to new therapeutic strategies based on the enhancement of immune response against the virus.
View Article and Find Full Text PDFParvovirus B19 (B19V), an ssDNA virus in the family Parvoviridae, is a human pathogenic virus, responsible for a wide range of clinical manifestations, still in need of effective and specific antivirals. DNA structures, including G-quadruplex (G4), have been recognised as relevant functional features in viral genomes, and small-molecule ligands binding to these structures are promising antiviral compounds. Bioinformatic tools predict the presence of potential G4 forming sequences (PQSs) in the genome of B19V, raising interest as targets for antiviral strategies.
View Article and Find Full Text PDFObjective: Fibrosis is the most characteristic pathological hallmark of SSc, a connective tissue disease characterized by vascular and immunological abnormalities, inflammation and enhanced extracellular matrix production, leading to progressive fibrosis of skin and internal organs. We previously demonstrated that parvovirus B19 (B19V) can infect normal human dermal fibroblasts (NHDFs) and that B19V persists in SSc fibroblasts. In this study, we investigated whether parvovirus B19V is able to activate in vitro NHDFs and to induce in these cells some phenotypic features similar to that observed in the SSc fibroblasts.
View Article and Find Full Text PDFThe family Parvoviridae includes an ample and most diverse collection of viruses. Exploring the biological diversity and the inherent complexity in these apparently simple viruses has been a continuous commitment for the scientific community since their first discovery more than fifty years ago. The Special Issue of 'Viruses' dedicated to the 'New Insights into Parvovirus Research' aimed at presenting a 'state of the art' in many aspects of research in the field, at collecting the newest contributions on unresolved issues, and at presenting new approaches exploiting systemic (-omic) methodologies.
View Article and Find Full Text PDFA better characterization of the HIV reservoir is pivotal for the development of effective eradication strategies. Accurate quantification of the latent reservoir remains challenging. Starting from a regular blood draw, the Tat/Rev induced limiting dilution assay (TILDA) combines serial dilution of CD4 T cells with a PCR-based detection of HIV-1 spliced mRNA produced upon cell stimulation.
View Article and Find Full Text PDFParvovirus B19 (B19V) is a human pathogenic virus, responsible for an ample range of clinical manifestations. Infections are usually mild, self-limiting, and controlled by the development of a specific immune response, but in many cases clinical situations can be more complex and require therapy. Presently available treatments are only supportive, symptomatic, or unspecific, such as administration of intravenous immunoglobulins, and often of limited efficacy.
View Article and Find Full Text PDFParvovirus B19 (B19V) is a human pathogenic virus associated with a wide range of clinical conditions. Currently, there are no recognized antiviral drugs for B19V treatment; therefore, efforts in the search for compounds inhibiting B19V replication are now being pursued. Coumarins (chromen-2-ones) are considered a privileged structure for designing novel orally bioavailable and non-peptidic antiviral agents.
View Article and Find Full Text PDFParvovirus B19 (B19V), a single-stranded DNA virus in the family Parvoviridae, is a human pathogenic virus responsible for a wide range of clinical manifestations. Currently there is no approved antiviral therapy for parvovirus infection. The acyclic nucleoside phosphonate cidofovir (CDV) has been demonstrated to inhibit replication of B19V in vitro.
View Article and Find Full Text PDFParvovirus B19 (B19V), a single-stranded DNA virus in the family Parvoviridae, is a human pathogenic virus, characterized by a selective but not exclusive tropism for erythroid progenitor cells. Widely diffuse, it is responsible for an ample range of clinical manifestations, whose characteristics and outcomes depend on the interplay between the viral properties and the physiological and immune status of the infected individuals. The complexity of virus-host relationship and the diversity of the clinical course of infection pose a diagnostic challenge that may require non-trivial solutions.
View Article and Find Full Text PDFParvovirus B19 (B19V) is a human pathogenic virus associated with a wide range of clinical conditions. In pregnancy, B19V poses a potential hazard to the fetus as crossing the placental barrier and infecting erythroid progenitor cells in bone marrow and liver, it blocks fetal erythropoiesis leading to profound anemia, hydrops and/or fetal death. The virus is not regarded as a teratogen, however more scientific awareness is emerging on mechanisms and consequences of intrauterine infection and possible sequelae in the neonatal development.
View Article and Find Full Text PDFIt is a matter of fact that the human gut microbiome also includes a non-bacterial fraction represented by eukaryotic cells and viruses. To further explore the gut microbiome variation in human populations, here we characterized the human DNA viral community from publicly available gut metagenome data sets from human populations with different geographical origin and lifestyle. In particular, such data sets encompass microbiome information from two western urban societies (USA and Italy), as well as two traditional hunter-gatherer communities (the Hadza from Tanzania and Matses from Peru) and one pre-agricultural tribe (Tunapuco from Peru).
View Article and Find Full Text PDFCentral to genetic studies for Parvovirus B19 (B19V) is the availability of genomic clones that may possess functional competence and ability to generate infectious virus. In our study, we established a new model genetic system for Parvovirus B19. A synthetic approach was followed, by design of a reference genome sequence, by generation of a corresponding artificial construct and its molecular cloning in a complete and functional form, and by setup of an efficient strategy to generate infectious virus, via transfection in UT7/EpoS1 cells and amplification in erythroid progenitor cells.
View Article and Find Full Text PDFParvovirus B19 (B19V) infection is restricted to erythroid progenitor cells (EPCs) of the human bone marrow, leading to transient arrest of erythropoiesis and severe complications mainly in subjects with underlying hematological disorders or with immune system deficits. Currently, there are no specific antiviral drugs for B19V treatment, but identification of compounds inhibiting B19V replication can be pursued by a drug repositioning strategy. In this frame, the present study investigates the activity of hydroxyurea (HU), the only disease-modifying therapy approved for sickle cell disease (SCD), towards B19V replication in the two relevant cellular systems, the UT7/EpoS1 cell line and EPCs.
View Article and Find Full Text PDFHuman parvovirus B19 (B19V) commonly induces self-limiting infections but can also cause severe clinical manifestations in patients with underlying haematological disorders or with immune system deficits. Currently, therapeutic options for B19V entirely rely on symptomatic and supportive treatments since a specific antiviral therapy is not yet available. Recently a first step in the research for active compounds inhibiting B19V replication has allowed identifying the acyclic nucleoside phosphonate cidofovir (CDV).
View Article and Find Full Text PDFHuman Parvovirus B19 (PVB19) is one of the most important pathogens that targets erythroid lineage. Many factors were mentioned for restriction to erythroid progenitor cells (EPCs). Previous studies showed that in non-permissive cells VP1 and VP2 (structural proteins) mRNAs were detected but could not translate to proteins.
View Article and Find Full Text PDFThe pathogenic Parvovirus B19 (B19V) is characterized by a strict adaptation to erythroid progenitor cells (EPCs), a heterogeneous population of differentiating cells with diverse phenotypic and functional properties. In our work, we studied the dynamics of B19V infection in EPCs in dependence on the cell differentiation stage, in terms of distribution of infected cells, synthesis of viral nucleic acids and production of infectious virus. EPCs at early differentiation stage led to an abortive infection, without viral genome replication and a very low transcriptional activity.
View Article and Find Full Text PDFHuman parvovirus B19 (B19V) replication is a process highly dependent on the cellular environment, therefore methodologies allowing for analysis at single cell level could represent effective tools to understand cell-to cell differences in the replication process and to investigate cell-virus interactions. Fluorescence in situ hybridization (FISH) can be combined with flow cytometry (flow-FISH) to enable the detection of target nucleic acid sequences in thousands of individual cells in a short amount of time. In the present study, a flow-FISH assay based on the use of a digoxigenin-labeled genomic probe has been developed to discriminate B19V infected cells following in vitro infection of UT7/EpoS1 cell line and EPCs (erythroid progenitor cells) generated from peripheral blood mononuclear cells.
View Article and Find Full Text PDF