We conducted a large-scale whole-brain morphometry study by analyzing 3.7 peta-voxels of mouse brain images at the single-cell resolution, producing one of the largest multi-morphometry databases of mammalian brains to date. We registered 204 mouse brains of three major imaging modalities to the Allen Common Coordinate Framework (CCF) atlas, annotated 182,497 neuronal cell bodies, modeled 15,441 dendritic microenvironments, characterized the full morphology of 1876 neurons along with their axonal motifs, and detected 2.
View Article and Find Full Text PDFMorphology is a cardinal feature of a neuron that mediates its functions, but profiling neuronal morphologies at scale remains a formidable challenge. Here we describe a generalizable pipeline for large-scale brainwide study of dendritic morphology of genetically-defined single neurons in the mouse brain. We generated a dataset of 3,762 3D-reconstructed and reference-atlas mapped striatal D1- and D2- medium spiny neurons (MSNs).
View Article and Find Full Text PDFNeural Regen Res
September 2025
Many fields, such as neuroscience, are experiencing the vast proliferation of cellular data, underscoring the need for organizing and interpreting large datasets. A popular approach partitions data into manageable subsets via hierarchical clustering, but objective methods to determine the appropriate classification granularity are missing. We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.
View Article and Find Full Text PDFThe hippocampal formation is critical for episodic memory, with area Cornu Ammonis 3 (CA3) a necessary substrate for auto-associative pattern completion. Recent theoretical and experimental evidence suggests that the formation and retrieval of cell assemblies enable these functions. Yet, how cell assemblies are formed and retrieved in a full-scale spiking neural network (SNN) of CA3 that incorporates the observed diversity of neurons and connections within this circuit is not well understood.
View Article and Find Full Text PDFThe tree-like morphology of neurons and glia is a key cellular determinant of circuit connectivity and metabolic function in the nervous system of essentially all animals. To elucidate the contribution of specific cell types to both physiological and pathological brain states, it is important to access detailed neuroanatomy data for quantitative analysis and computational modeling. NeuroMorpho.
View Article and Find Full Text PDFComputational simulations with data-driven physiological detail can foster a deeper understanding of the neural mechanisms involved in cognition. Here, we utilize the wealth of cellular properties from Hippocampome.org to study neural mechanisms of spatial coding with a spiking continuous attractor network model of medial entorhinal cortex circuit activity.
View Article and Find Full Text PDFComputational simulations with data-driven physiological detail can foster a deeper understanding of the neural mechanisms involved in cognition. Here, we utilize the wealth of cellular properties from Hippocampome.org to study neural mechanisms of spatial coding with a spiking continuous attractor network model of medial entorhinal cortex circuit activity.
View Article and Find Full Text PDFThe hippocampal formation is critical for episodic memory, with area Cornu Ammonis 3 (CA3) a necessary substrate for auto-associative pattern completion. Recent theoretical and experimental evidence suggests that the formation and retrieval of cell assemblies enable these functions. Yet, how cell assemblies are formed and retrieved in a full-scale spiking neural network (SNN) of CA3 that incorporates the observed diversity of neurons and connections within this circuit is not well understood.
View Article and Find Full Text PDFThe tree-like morphology of neurons and glia is a key cellular determinant of circuit connectivity and metabolic function in the nervous system of essentially all animals. To elucidate the contribution of specific cell types to both physiological and pathological brain states, it is important to access detailed neuroanatomy data for quantitative analysis and computational modeling. NeuroMorpho.
View Article and Find Full Text PDFMany fields, such as neuroscience, are experiencing the vast proliferation of cellular data, underscoring the need for organizing and interpreting large datasets. A popular approach partitions data into manageable subsets via hierarchical clustering, but objective methods to determine the appropriate classification granularity are missing. We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.
View Article and Find Full Text PDFWe present a quantitative strategy to identify all projection neuron types from a given region with statistically different patterns of anatomical targeting. We first validate the technique with mouse primary motor cortex layer 6 data, yielding two clusters consistent with cortico-thalamic and intra-telencephalic neurons. We next analyze the presubiculum, a less-explored region, identifying five classes of projecting neurons with unique patterns of divergence, convergence, and specificity.
View Article and Find Full Text PDFHippocampome.org is a mature open-access knowledge base of the rodent hippocampal formation focusing on neuron types and their properties. Previously, Hippocampome.
View Article and Find Full Text PDFSummary: Neural morphology, the branching geometry of brain cells, is an essential cellular substrate of nervous system function and pathology. Despite the accelerating production of digital reconstructions of neural morphology, the public accessibility of data remains a core issue in neuroscience. Deficiencies in the availability of existing data create redundancy of research efforts and limit synergy.
View Article and Find Full Text PDFDigital reconstructions provide an accurate and reliable way to store, share, model, quantify, and analyze neural morphology. Continuous advances in cellular labeling, tissue processing, microscopic imaging, and automated tracing catalyzed a proliferation of software applications to reconstruct neural morphology. These computer programs typically encode the data in custom file formats.
View Article and Find Full Text PDFComprehensive quantification of neuronal architectures underlying anatomical brain connectivity remains challenging. We introduce a method to identify distinct axonal projection patterns from a source to a set of target regions and the count of neurons with each pattern. A source region projecting to n targets could have 2-1 theoretically possible projection types, although only a subset of these types typically exists.
View Article and Find Full Text PDFQuantifying neuron morphology and distribution at the whole-brain scale is essential to understand the structure and diversity of cell types. It is exceedingly challenging to reuse recent technologies of single-cell labeling and whole-brain imaging to study human brains. We propose adaptive cell tomography (ACTomography), a low-cost, high-throughput, and high-efficacy tomography approach, based on adaptive targeting of individual cells.
View Article and Find Full Text PDFMotivation: Neural morphology, the branching geometry of neurons and glia in the nervous system, is an essential cellular substrate of brain function and pathology. Despite the accelerating production of digital reconstructions of neural morphology in laboratories worldwide, the public accessibility of data remains a core issue in neuroscience. Deficiencies in the availability of existing data create redundancy of research efforts and prevent researchers from building on others' work.
View Article and Find Full Text PDFThe increasing number of peer-reviewed publications constitutes a challenge for biocuration. For example, NeuroMorpho.Org, a sharing platform for digital reconstructions of neural morphology, must evaluate more than 6000 potentially relevant articles per year to identify data of interest.
View Article and Find Full Text PDFHippocampal area CA3 performs the critical auto-associative function underlying pattern completion in episodic memory. Without external inputs, the electrical activity of this neural circuit reflects the spontaneous spiking interplay among glutamatergic pyramidal neurons and GABAergic interneurons. However, the network mechanisms underlying these resting-state firing patterns are poorly understood.
View Article and Find Full Text PDFWe conducted a large-scale study of whole-brain morphometry, analyzing 3.7 peta-voxels of mouse brain images at the single-cell resolution, producing one of the largest multi-morphometry databases of mammalian brains to date. We spatially registered 205 mouse brains and associated data from six Brain Initiative Cell Census Network (BICCN) data sources covering three major imaging modalities from five collaborative projects to the Allen Common Coordinate Framework (CCF) atlas, annotated 3D locations of cell bodies of 227,581 neurons, modeled 15,441 dendritic microenvironments, characterized the full morphology of 1,891 neurons along with their axonal motifs, and detected 2.
View Article and Find Full Text PDFLong-range axonal projections are quintessential determinants of network connectivity, linking cellular organization and circuit architecture. Here we introduce a quantitative strategy to identify, from a given source region, all "projection neuron types" with statistically different patterns of anatomical targeting. We first validate the proposed technique with well-characterized data from layer 6 of the mouse primary motor cortex.
View Article and Find Full Text PDFHippocampome.org is a mature open-access knowledge base of the rodent hippocampal formation focusing on neuron types and their properties. Hippocampome.
View Article and Find Full Text PDF