Publications by authors named "Giorgia Zambito"

Article Synopsis
  • T-cell location and activity are important predictors of how tumors respond to treatment, specifically in the context of pancreatic cancer (PDAC).
  • Researchers used a special mouse model (TbiLuc) to track T-cells' behavior during PDAC tumor growth and treatment with specific immunotherapy drugs.
  • Results showed significant differences in T-cell presence between tumors with high (hot) and low (cold) T-cell infiltration, and after treatment, an increase in T-cell activity was observed in lymph nodes, highlighting the model's effectiveness for monitoring immune responses.
View Article and Find Full Text PDF

Incorporating non-invasive biosensing features in organ-on-chip models is of paramount importance for a wider implementation of these advanced in vitro microfluidic platforms. Optical biosensors, based on Bioluminescence Imaging (BLI), enable continuous, non-invasive, and in-situ imaging of cells, tissues or miniaturized organs without the drawbacks of conventional fluorescence imaging. Here, we report the first-of-its-kind integration and optimization of BLI in microfluidic chips, for non-invasive imaging of multiple biological readouts.

View Article and Find Full Text PDF
Article Synopsis
  • * The integration of biosensors with these models enables easier detection of physiological changes and disease markers, especially for complex diseases like cancer, improving diagnosis and treatment monitoring.
  • * This chapter reviews the use of optical imaging techniques coupled with organs-on-chips for studying solid tumors and their microenvironments, discussing current challenges and future possibilities for more effective research applications.
View Article and Find Full Text PDF

Melanoma is an aggressive type of skin cancer with a poor prognosis after it gets metastasized. The early detection of malignant melanoma is critical for effective therapy. Because melanoma often resembles moles, routine skin check-up may help for timely identification of suspicious areas.

View Article and Find Full Text PDF

A redox-responsive nanocarrier is a promising strategy for the intracellular drug release because it protects the payload, prevents its undesirable leakage during extracellular transport, and favors site-specific drug delivery. In this study, we developed a novel redox responsive core-shell structure nanohydrogel prepared by a water in oil nanoemulsion method using two biocompatible synthetic polymers: vinyl sulfonated poly(-(2-hydroxypropyl) methacrylamide mono/dilactate)-polyethylene glycol-poly(-(2-hydroxypropyl) methacrylamide mono/dilactate) triblock copolymer, and thiolated hyaluronic acid. The influence on the nanohydrogel particle size and distribution of formulation parameters was investigated by a three-level full factorial design to optimize the preparation conditions.

View Article and Find Full Text PDF

Transgenic mouse models have facilitated research of human diseases and validation of therapeutic approaches. Inclusion of optical reporter genes (fluorescent or bioluminescent genes) in the targeting vectors used to develop such models makes in vivo imaging of cellular and molecular events possible, from the microscale to the macroscale. In particular, transgenic mouse models expressing optical reporter genes allowed accurately distinguishing immune cell types from trafficking in vivo using intravital microscopy or whole-body optical imaging.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) promote cancer growth and metastasis, but their role in tumor development needs to be fully understood due to the dynamic changes of tumor microenvironment (TME). Here, we report an approach to visualize TAMs by optical imaging and by Fluorine-19 (F) magnetic resonance imaging (MRI) that is largely applied to track immune cells . TAMs are targeted with PLGA-PEG-mannose nanoparticles (NPs) encapsulating perfluoro-15-crown-5-ether (PFCE) as MRI contrast agent.

View Article and Find Full Text PDF

Multicolor bioluminescence imaging using near-infrared emitting luciferases is an attractive application to detect two cell populations within one animal model. Herein, we describe how to distinguish dual-color bioluminescent signals co-localized in the same compartment. We tested CBG2 click beetle (λ = 660 nm) and CBR2 click beetle (λ = 730 nm) luciferases paired with NH-NpLH2 luciferin.

View Article and Find Full Text PDF

Bioluminescence (BL) relies on the enzymatic reaction between luciferase, a substrate conventionally named luciferin, and various cofactors. BL imaging has become a widely used technique to interrogate gene expression and cell fate, both in small and large animal models of research. Recent developments include the generation of improved luciferase-luciferin systems for deeper and more sensitive imaging as well as new caged luciferins to report on enzymatic activity and other intracellular functions.

View Article and Find Full Text PDF

NanoLuc luciferase recently gained popularity due to its small size and superior bioluminescence performance. For in vivo imaging applications, NanoLuc has been limited by its substrate furimazine, which has low solubility and bioavailability. Herein, we compared the performances of recently reported NanoLuc luciferase substrates for in vivo imaging in mice.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) has a mean survival of only 15 months. Tumour heterogeneity and blood-brain barrier (BBB) mainly hinder the transport of active agents, leading to late diagnosis, ineffective therapy and inaccurate follow-up. The use of hydrogel nanoparticles, particularly hyaluronic acid as naturally occurring polymer of the extracellular matrix (ECM), has great potential in improving the transport of drug molecules and, furthermore, in facilitatating the early diagnosis by the effect of hydrodenticity enabling the T boosting of Gadolinium chelates for MRI.

View Article and Find Full Text PDF

For multicolor bioluminescence applications, red and near-infrared signals are desirable over shorter wavelength signals because they are not as susceptible to light attenuation by blood and tissue. Herein, we describe the development of a new click beetle luciferase mutant, CBG2, with a red-shifted color emission. When paired with NH-NpLH2 luciferin, CBG2 (λ = 660 nm) and CBR2 (λ = 730 nm) luciferases can be used for simultaneous dual-color bioluminescence imaging in deep tissue.

View Article and Find Full Text PDF

Oncolytic viruses (OVs) are emerging as promising and potential anti-cancer therapeutic agents, not only able to kill cancer cells directly by selective intracellular viral replication, but also to promote an immune response against tumor. Unfortunately, the bioavailability under systemic administration of OVs is limited because of undesired inactivation caused by host immune system and neutralizing antibodies in the bloodstream. To address this issue, a novel hyaluronic acid based redox responsive nanohydrogel was developed in this study as delivery system for OVs, with the aim to protect the OVs following systemic administration.

View Article and Find Full Text PDF

Purpose: Currently, a variety of red and green beetle luciferase variants are available for bioluminescence imaging (BLI). In addition, new luciferin analogues providing longer wavelength luminescence have been developed that show promise for improved deep tissue imaging. However, a detailed assessment of these analogues (e.

View Article and Find Full Text PDF

Reporter genes are used to visualize intracellular biological phenomena, including viral infection. Here we demonstrate bioluminescent imaging of viral infection using the NanoBiT system in combination with intraperitoneal injection of a furimazine analogue, hydrofurimazine. This recently developed substrate has enhanced aqueous solubility allowing delivery of higher doses for in vivo imaging.

View Article and Find Full Text PDF

Macrophages play a role in almost every disease such as cancer, infections, injuries, metabolic and inflammatory diseases and are becoming an attractive therapeutic target. However, understanding macrophage diversity, tissue distribution and plasticity will help in defining precise targeting strategies and effective therapies. Active targeting of macrophages using nanoparticles for therapeutic purposes is still at its infancy but holds promises since macrophages have shown high specific uptake of nanoparticles.

View Article and Find Full Text PDF

Non-invasive imaging technologies to visualize the location and functionality of T cells are of great value in immunology. Here, we describe the design and generation of a transgenic mouse in which all T cells constitutively express green-emitting click-beetle luciferase (CBG99) while expression of the red-emitting firefly luciferase (PpyRE9) is induced by Nuclear Factor of Activated T cells (NFAT) such as during T cell activation, which allows multicolor bioluminescence imaging of T cell location and function. This dual-luciferase mouse, which we named TbiLuc, showed high constitutive luciferase expression in lymphoid organs such as lymph nodes and the spleen.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: